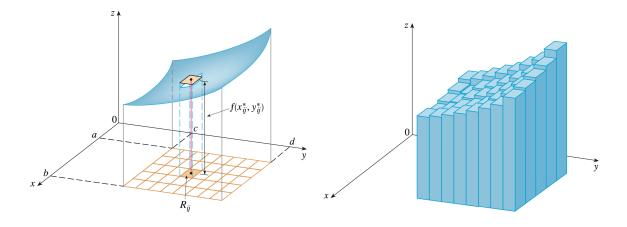
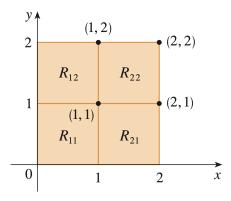
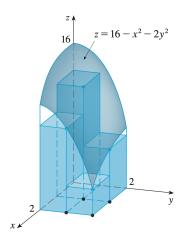

Lecture Notes	
Math 2400 - Calculus II	l
Spring 2024	

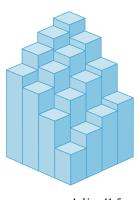

Name:

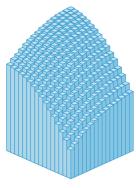
12.1 Double Integrals over Rectangles

Question. Consider a function f defined on a closed rectangle $R = [a, b] \times [c, d]$, and suppose that $f(x, y) \ge 0$. What is the volume of the solid S that lies above R and under the graph of f?

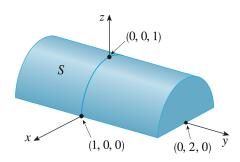






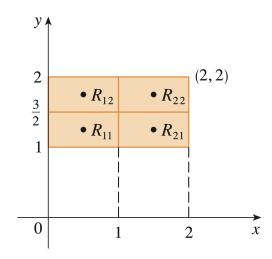

Definition. What is the double integral of f over the rectangle R?

Example. Estimate the volume of the solid that lies above the square $R = [0, 2] \times [0, 2]$ and below the elliptic paraboloid $z = 16 - x^2 - 2y^2$. Divide R into four equal squares and choose the sample point to be the upper right corner of each square R_{ij} .



 $m = n = 4, V \approx 41.5$ $m = n = 16, V \approx 46.46875$

Example. If $R = \{(x, y) \mid -1 \le x \le 1, -2 \le y \le 2\}$, evaluate the integral


$$\iint\limits_R \sqrt{1-x^2} \ dA$$

by interpreting it geometrically.

Definition. What is the Midpoint Rule for double integrals?

Example. Use the Midpoint Rule with m=n=2 to estimate the value of the integral $\iint_R (x-3y^2) dA$, where $R=[0,2]\times[1,2]$.

Definition. What is the average value of a function f(x, y) on a rectangle R?

Remark. Properties of Double Integrals

$$\bullet \iint\limits_R [f(x,y) + g(x,y)] \, dA =$$

$$\bullet \iint\limits_R cf(x,y) \, dA =$$

• What can we say if $f(x,y) \ge g(x,y)$ for all (x,y) in R?