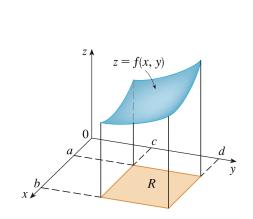
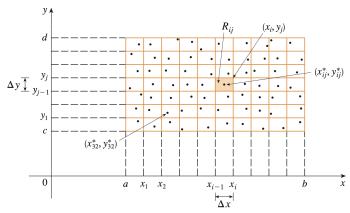
Name: Champ

12.1 Double Integrals over Rectangles

Question. Consider a function f defined on a closed rectangle $R = [a, b] \times [c, d]$, and suppose that $f(x, y) \ge 0$. What is the volume of the solid S that lies above R and under the graph of f?





· Divide R into subrectongles:

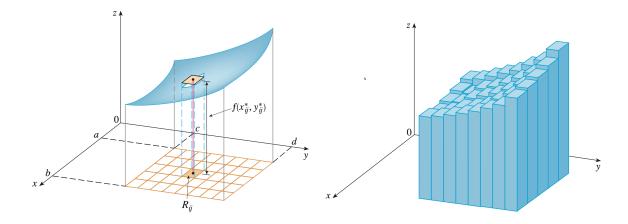
Divide [a,b] into m subintervals of width $\Delta x = \frac{b-a}{m}$

Divide [c,d] into a subintervals of width $\Delta y = \frac{d-c}{a}$

The subrectangle Rij is [xi-1,xi] x [yi-1,yi] and has area DA = DxDy

- · Choose a sample point (xi, yi,) in each Ris
- · The volume of the "column" above Rij is approximately f(xijuyij) DA
- . Therefore, the total volume under f is approximately

$$V \approx \sum_{i=1}^{n} \sum_{j=1}^{n} f(x_{ij}^{*}, y_{ij}^{*}) \Delta A$$

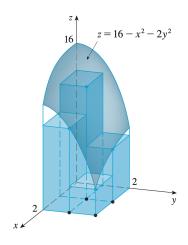


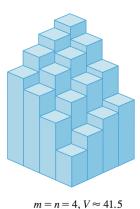
Definition. What is the double integral of f over the rectangle R?

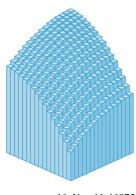
$$\iint\limits_{R} f(x,y) dA = \lim\limits_{m,n\to\infty} \underbrace{\sum_{i=1}^{m} \int\limits_{j=1}^{n} f(x_{i,j}^{+}, y_{i,j}^{+}) \Delta A}_{i=1}$$

if this limit exists.

Example. Estimate the volume of the solid that lies above the square $R = [0, 2] \times [0, 2]$ and below the elliptic paraboloid $z = 16 - x^2 - 2y^2$. Divide R into four equal squares and choose the sample point to be the upper right corner of each square R_{ij} .







 $m = n = 16, V \approx 46.46875$

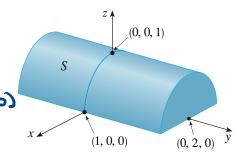
Example. If $R = \{(x,y) \mid -1 \le x \le 1, -2 \le y \le 2\}$, evaluate the integral

$$\iint\limits_R \sqrt{1-x^2} \ dA$$

by interpreting it geometrically.

. Hard to compute from limit definition

$$N_0 = X_2 + 3_3 = 1 - X_3$$
 (550)



. The double integral represents the volume below (half of) a circular cylinder of radius 1

$$V = \frac{1}{2} \cdot (\pi r^2 h) = \frac{1}{2} \cdot (\pi \cdot 1^2 \cdot 4) = 2\pi$$

Definition. What is the Midpoint Rule for double integrals?

If
$$f(x,y)$$
 dA $\approx \sum_{i=1}^{n} \sum_{j=1}^{n} f(x_i, y_j) \Delta A$
where x_i is the midpoint of $[x_{i-1}, x_i]$ and y_i is the midpoint of $[y_{i-1}, y_i]$

Example. Use the Midpoint Rule with m=n=2 to estimate the value of the integral $\iint_R (x-3y^2) dA$, where $R=[0,2]\times[1,2]$.

$$\int_{R} (x-3y^{2}) \approx \sum_{i=1}^{2} \sum_{j=1}^{2} f(\overline{x_{i}}, \overline{y_{j}}) \Delta A$$

$$\int_{R} (x-3y^{2}) \approx \sum_{i=1}^{2} \sum_{j=1}^{2} f(\overline{x_{i}}, \overline{y_{j}}) \Delta A$$

$$\int_{R} (x-3y^{2}) \approx \sum_{i=1}^{2} \sum_{j=1}^{2} f(\overline{x_{i}}, \overline{y_{j}}) \Delta A$$

$$\int_{R} (x-3y^{2}) \approx \sum_{i=1}^{2} \sum_{j=1}^{2} f(\overline{x_{i}}, \overline{y_{j}}) \Delta A$$

$$\int_{R} (x-3y^{2}) \approx \sum_{i=1}^{2} \sum_{j=1}^{2} f(\overline{x_{i}}, \overline{y_{j}}) \Delta A$$

$$\int_{R} (x-3y^{2}) \approx \sum_{i=1}^{2} \sum_{j=1}^{2} f(\overline{x_{i}}, \overline{y_{j}}) \Delta A$$

$$\int_{R} (x-3y^{2}) \approx \sum_{i=1}^{2} \sum_{j=1}^{2} f(\overline{x_{i}}, \overline{y_{j}}) \Delta A$$

$$\int_{R} (x-3y^{2}) \approx \sum_{i=1}^{2} \sum_{j=1}^{2} f(\overline{x_{i}}, \overline{y_{j}}) \Delta A$$

$$\int_{R} (x-3y^{2}) \approx \sum_{i=1}^{2} \sum_{j=1}^{2} f(\overline{x_{i}}, \overline{y_{j}}) \Delta A$$

$$\int_{R} (x-3y^{2}) \approx \sum_{i=1}^{2} \sum_{j=1}^{2} f(\overline{x_{i}}, \overline{y_{j}}) \Delta A$$

$$\int_{R} (x-3y^{2}) \approx \sum_{i=1}^{2} \sum_{j=1}^{2} f(\overline{x_{i}}, \overline{y_{j}}) \Delta A$$

$$\int_{R} (x-3y^{2}) \approx \sum_{i=1}^{2} \sum_{j=1}^{2} f(\overline{x_{i}}, \overline{y_{j}}) \Delta A$$

$$\int_{R} (x-3y^{2}) \approx \sum_{i=1}^{2} \sum_{j=1}^{2} f(\overline{x_{i}}, \overline{y_{j}}) \Delta A$$

$$\int_{R} (x-3y^{2}) \approx \sum_{i=1}^{2} \sum_{j=1}^{2} f(\overline{x_{i}}, \overline{y_{j}}) \Delta A$$

$$\int_{R} (x-3y^{2}) \approx \sum_{i=1}^{2} \sum_{j=1}^{2} f(\overline{x_{i}}, \overline{y_{j}}) \Delta A$$

$$\int_{R} (x-3y^{2}) \approx \sum_{i=1}^{2} \sum_{j=1}^{2} f(\overline{x_{i}}, \overline{y_{j}}) \Delta A$$

$$\int_{R} (x-3y^{2}) \approx \sum_{i=1}^{2} \sum_{j=1}^{2} f(\overline{x_{i}}, \overline{y_{j}}) \Delta A$$

$$\int_{R} (x-3y^{2}) \approx \sum_{i=1}^{2} \sum_{j=1}^{2} f(\overline{x_{i}}, \overline{y_{j}}) \Delta A$$

$$\int_{R} (x-3y^{2}) \Delta A = \sum_{i=1}^{2} \sum_{j=1}^{2} f(\overline{x_{i}}, \overline{y_{j}}) \Delta A$$

$$\int_{R} (x-3y^{2}) \Delta A = \sum_{i=1}^{2} \sum_{j=1}^{2} f(\overline{x_{i}}, \overline{y_{j}}) \Delta A$$

$$\int_{R} (x-3y^{2}) \Delta A = \sum_{i=1}^{2} f(\overline{x_{i}}, \overline{y_{i}}) \Delta A$$

$$\int_{R} (x-3y^{2}) \Delta A = \sum_{i=1}^{2} f(\overline{x_{i}}, \overline{y_{i}}) \Delta A$$

$$\int_{R} (x-3y^{2}) \Delta A = \sum_{i=1}^{2} f(\overline{x_{i}}, \overline{y_{i}}) \Delta A$$

$$\int_{R} (x-3y^{2}) \Delta A = \sum_{i=1}^{2} f(\overline{x_{i}}, \overline{y_{i}}) \Delta A$$

$$\int_{R} (x-3y^{2}) \Delta A = \sum_{i=1}^{2} f(\overline{x_{i}}, \overline{y_{i}}) \Delta A$$

$$\int_{R} (x-3y^{2}) \Delta A = \sum_{i=1}^{2} f(\overline{x_{i}}, \overline{y_{i}}) \Delta A$$

$$\int_{R} (x-3y^{2}) \Delta A = \sum_{i=1}^{2} f(\overline{x_{i}}, \overline{y_{i}}) \Delta A$$

$$\int_{R} (x-3y^{2}) \Delta A = \sum_{i=1}^{2} f(\overline{x_{i}}, \overline{y_{i}}) \Delta A$$

$$\int_{R} (x-3y^{2}) \Delta A = \sum_{i=1}^{2} f(\overline{x_{i}}, \overline{y_{i}}$$

Definition. What is the average value of a function f(x, y) on a rectangle R?

$$f_{avg} = \frac{1}{|R|} \iint_{R} f(x,y) dA$$

where IRI means the area of R.

Intuition: if $Z=f(x,\gamma)$ describes a mountainous region, we can chop off the tops at height favg and fill in the valleys to make the region flat.

Remark. Properties of Double Integrals

•
$$\iint\limits_R \left[f(x,y) + g(x,y) \right] dA = \iint\limits_R \mathbf{f}(\mathbf{x},\gamma) \, d\mathbf{A} + \iint\limits_R \mathbf{J}(\mathbf{x},\gamma) \, d\mathbf{A}$$

•
$$\iint_R cf(x,y) dA =$$
 C $\iint_R f(x,y) dA$

• What can we say if
$$f(x,y) \ge g(x,y)$$
 for all (x,y) in R ? If (x,y) $dA \ge \iint_{\mathbb{R}} g(x,y) dA$