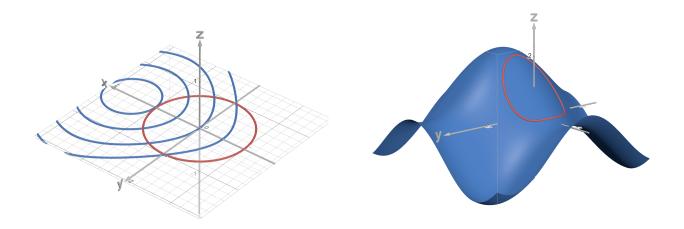
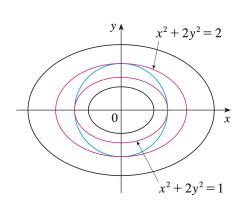
Lecture Notes	
Math 2400 - Calculus II]
Spring 2024	

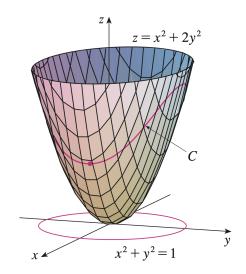
11.8 Lagrange Multipliers

 ${\bf Question.}$ What is the idea of Lagrange Multipliers?



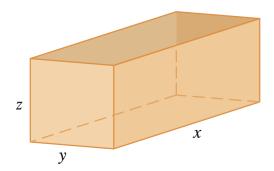
Example. Find the extreme values of the function $f(x,y) = x^2 + 2y^2$ on the circle $x^2 + y^2 = 1$.



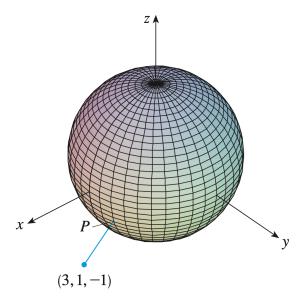


Example. Find the extreme values of the function $f(x,y) = x^2 + 2y^2$ on the disk $x^2 + y^2 \le 1$.

Example. A rectangular box without a lid is to be made from $12~\mathrm{m}^2$ of cardboard. Find the maximum volume of such a box.



Example. Find the points on the sphere $x^2 + y^2 + z^2 = 4$ that are closest to and farthest from the point (3, 1, -1).



Method of Lagrange Multipliers

Theorem (Two Variables). To find the maximum and minimum values of f(x, y) subject to the constraint g(x, y) = k (assuming that these extreme values exist and $\Delta g \neq 0$ on the curve g(x, y) = k):

(a) Find all values of x, y, and λ such that

$$\Delta f(x,y) = \lambda \Delta g(x,y)$$

and

$$q(x, y) = k$$

(b) Evaluate f at all the points x, y that result from step (a). The largest of these values is the maximum value of f; the smallest is the minimum value of f.

Writing the vector equation $\Delta f = \lambda \Delta g$ in terms of components, then the equations in step (a) become

$$f_x = \lambda g_x$$
 $f_y = \lambda g_y$ $g(x, y) = k$

which is a system of three equations in the three unknowns x, y, and λ . It is not necessary to find explicit values for λ .

Theorem (Three Variables). To find the maximum and minimum values of f(x, y, z) subject to the constraint g(x, y, z) = k (assuming that these extreme values exist and $\Delta g \neq 0$ on the surface g(x, y, z) = k):

(a) Find all values of x, y, z, and λ such that

$$\Delta f(x, y, z) = \lambda \Delta g(x, y, z)$$

and

$$g(x, y, z) = k$$

(b) Evaluate f at all the points x, y, z that result from step (a). The largest of these values is the maximum value of f; the smallest is the minimum value of f.

Writing the vector equation $\Delta f = \lambda \Delta g$ in terms of components, then the equations in step (a) become

$$f_x = \lambda g_x$$
 $f_y = \lambda g_y$ $f_z = \lambda g_z$ $g(x, y, z) = k$

which is a system of four equations in the four unknowns x, y, z, and λ . It is not necessary to find explicit values for λ .