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11.8 Lagrange Multipliers
Question. What is the idea of Lagrange Multipliers?
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Example. Find the extreme values of the function f(z,y) = 22 + 2y? on the circle 22 + y? = 1.
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Example. Find the extreme values of the function f(z,y) = 2? + 2y? on the disk 22 + y? < 1.
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Example. A rectangular box without a lid is to be made from 12 m? of cardboard. Find the
maximum volume of such a box.
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Example. Find the points on the sphere 22 + y% + 2% = 4 that are closest to and farthest from
the point (3,1, —1).
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Method of Lagrange Multipliers

Theorem (Two Variables). To find the maximum and minimum values of f(x,y) subject to the
constraint g(z,y) = k (assuming that these extreme values exist and Ag # 0 on the curve

g(z,y) = k):

(a) Find all values of z,y, and A such that

Af(x,y) = Ag(z,y)

and
g(x,y) =k

(b) Evaluate f at all the points x,y that result from step (a). The largest of these values is the
maximum value of f; the smallest is the minimum value of f.

Writing the vector equation Af = AAg in terms of components, then the equations in step (a)
become

fx:)\g:c fy:)‘gy g(x,y):k

which is a system of three equations in the three unknowns z,y, and A. It is not necessary to find
explicit values for A.

Theorem (Three Variables). To find the maximum and minimum values of f(z,y, z) subject to
the constraint g(x,y, z) = k (assuming that these extreme values exist and Ag # 0 on the surface

9(z,y,2z) = k):

(a) Find all values of z,y, z, and A such that

Af(z,y,2) = Ng(z,y, 2)

and
g(x,y,2) =k

(b) Evaluate f at all the points x,y, z that result from step (a). The largest of these values is
the maximum value of f; the smallest is the minimum value of f.

Writing the vector equation Af = AAg in terms of components, then the equations in step (a)
become

fz = Aga fy:)‘gy fz=2g. 9($7yaz):k

which is a system of four equations in the four unknowns x,y, z, and A. It is not necessary to find
explicit values for A.



