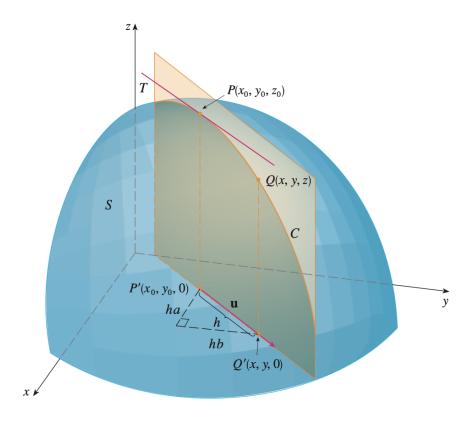
Name: Champ

11.6 Directional Derivatives and the Gradient Vector

Question. What is the idea of a directional derivative?



- · Given an arbitrary unit vector $\vec{u} = \langle a,b \rangle$, the vertical plane in the direction of \vec{u} intersects S in a curve C.
- . The slope of the tangent line T to the curve C at the point P is the derivative of z = f(x,y) in the direction of \vec{u} .

Definition. What is the limit definition of the directional derivative of f at (x_0, y_0) in the direction of a unit vector $\vec{u} = \langle a, b \rangle$?

$$D_u f(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0 + ha, y_0 + hb) - f(x_0, y_0)}{h}$$

if this limit exists.

Remark. Explain how the partial derivatives f_x and f_y are special cases of the directional derivative.

If we take
$$\vec{u} = \vec{t} = \langle 1, 0 \rangle$$
, then $D_{\vec{t}} f = f_x$

If we take
$$\vec{n} = \vec{j} = \langle 2, 17 \rangle$$
, then $0, f = fy$

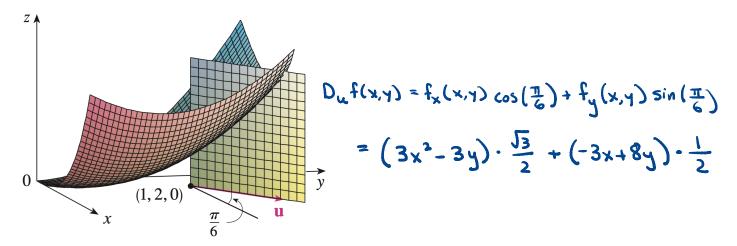
Theorem. If f is a differentiable function of x and y, how to compute the directional derivative in the direction of a unit vector $\vec{u} = \langle a, b \rangle$?

$$D_{u}f(x,y)=f_{x}(x,y)a+f_{y}(x,y)b$$

If \vec{u} makes angle θ with the positive x-axis, then $\vec{u} = \langle \cos \theta, \sin \theta \rangle$ and

$$D_{\mu}f(x,y)=f_{\chi}(x,y)\cos\theta+f_{\chi}(x,y)\sin\theta$$

Example. Find the directional derivative $D_u f(x,y)$ if $f(x,y) = x^3 - 3xy + 4y^2$ and \vec{u} is the unit vector given by the angle $\theta = \pi/6$. What is $D_u f(1,2)$?



At the point (1,2),

$$D_{u}f(1,2) = (3\cdot1^{2}-3\cdot2)\frac{\sqrt{3}}{2} + (-3\cdot1+8\cdot2)\cdot\frac{1}{2} = \frac{13-3\sqrt{3}}{2}$$

Question. How can the directional derivative of a differentiable function be written as the dot product of two vectors?

$$D_{u}f(x,y) = f_{x}(x,y) + f_{y}(x,y) + f_$$

Definition. If f is a function of two variables x and y, what is the gradient of f?

$$\Delta t(x'A) = \langle t^{x}(x'A), t^{a}(x'A) \rangle$$

Example. Find ∇f if $f(x,y) = \sin x + e^{xy}$.

$$\Delta t(x', x) = \langle t^{x'}, t^{3} \rangle = \langle \cos x + \lambda \epsilon_{x,3} \rangle$$

For example, at the point (0,1):

$$\nabla f(0,1) = \langle 2, 0 \rangle$$

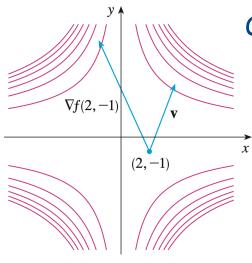
Remark. Rewrite the expression for the directional derivative of a differentiable function using ∇f .

$$D_{u}f(x,y) = \nabla f(x,y) \cdot \vec{u}$$

Note: this is the scalar projection of Pf onto i

$$Comp_{\vec{k}} \nabla f = \frac{\nabla f \cdot \vec{k}}{\nabla f \cdot \vec{k}} = \nabla f \cdot \vec{k}$$

Example. Find the directional derivative of the function $f(x,y) = x^2y^3 - 4y$ at the point (2,-1) in the direction of the vector $\vec{v} = 2\vec{i} + 5\vec{j}$.



1) Gadient vector:

$$\nabla f(x,y) = \langle 2xy^3, 3x^2y^2 - 4 \rangle$$

Since $|\vec{v}| = \sqrt{2q}$, the unit vector in the direction of \vec{v} is

$$\vec{L} = \left\langle \frac{2}{\sqrt{2\eta}}, \frac{5}{\sqrt{2\eta}} \right\rangle$$

3) Therefore,

$$D_{u}(2,-1) = \nabla f(2,-1) \cdot \vec{u} = \langle -4,8 \rangle \cdot \langle \frac{2}{\sqrt{29}}, \frac{5}{\sqrt{29}} \rangle = \frac{32}{\sqrt{29}}$$

Definition. For a function f(x, y, z) of three variables, what is the limit definition of the directional derivative of f at (x_0, y_0, z_0) in the direction of a unit vector $\vec{u} = \langle a, b, c \rangle$?

$$D_{n}f(x_{0},y_{0},z_{0}) = \lim_{h\to 0} \frac{f(x_{0}+ha,y_{0}+hb,z_{0}+hc) - f(x_{0},y_{0},z_{0})}{h}$$

if this limit exists.

Definition. For a function f(x, y, z) of three variables, how to compute the directional derivative of f at (x_0, y_0, z_0) in the direction of a unit vector $\vec{u} = \langle a, b, c \rangle$?

$$D_{u}f(x,y,z) = f_{x}(x,y,z) \cdot a + f_{y}(x,y,z) \cdot b + f_{z}(x,y,z) \cdot c$$

Definition. For a function f(x, y, z) of three variables, what is the gradient vector of f? Rewrite the formula for the directional derivative of using the gradient vector.

$$\Delta f(x,1,s) = \langle f^{x}(x,1,s), f^{2}(x,1,s) \rangle f^{5}(x,1,s) \rangle$$

Then the formula for the directional derivative becomes

Example. Let $f(x, y, z) = x \sin yz$.

- (a) Find the gradient of f
- (b) Find the directional derivative of f at (1,3,0) in the direction of $\vec{v} = \vec{i} + 2\vec{j} \vec{k}$.
- (a) The gradient of f is

At(x'1's) = < sinds' xs cords' xh cords>

(b) At the point (1,3,0), $\nabla f(1,3,0) = \langle 0,0,3 \rangle$

The unit vector in the direction of v is

$$D_{u} f(1,3,0) = \nabla f(1,3,0) \cdot \vec{u} = \langle 0,0,3 \rangle \cdot \langle \vec{t}_{6}, \vec{t}_{6} \rangle = \frac{-3}{J_{c}}$$

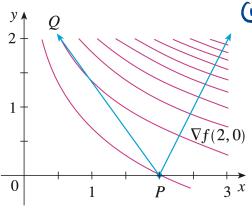
Theorem. Suppose we have a function f of two or three variables and we consider all possible directional derivatives of f at a given point. In which of these directions does f change fastest and what is the maximum rate of change?

- . The maximum value of Duf(x,y) is | Tf(x,y)
- " It occurs when it has the same direction as Tf(x,y)

Proof.

Duf = $\nabla f \cdot \vec{u} = |\nabla f| |\vec{u}| \cos \theta = |\nabla f| \cos \theta$ where θ is the angle between ∇f and \vec{u} . The maximum value of $\cos \theta$ is 1, when $\theta = 0$. That is, ∇f and \vec{u} have the same direction.

Example. If $f(x,y) = xe^y$, find the rate of change of f at the point P(2,0) in the direction from P to $Q(\frac{1}{2},2)$. In what direction does f have the maximum rate of change? What is this maximum rate of change?



(1) Gradient vector:

$$\Delta t(x', \lambda) = \langle t^x, t^2 \rangle = \langle 6_{A}^2, x 6_{A}^2 \rangle$$

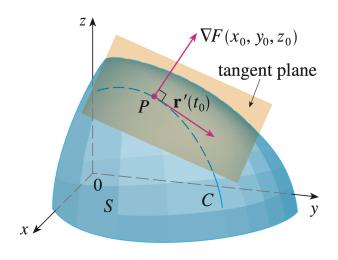
The vector $\overrightarrow{PQ} = \langle -1.5, 2 \rangle$, so $\overrightarrow{u} = \langle -\frac{3}{5}, \frac{4}{5} \rangle$

Hence Duf(2,0) =
$$\nabla f(2,0) \cdot \vec{u} = \langle 1,2 \rangle \cdot \langle -\frac{3}{5}, \frac{4}{5} \rangle = 1$$

3 f increases the fastest in the direction of $\nabla f(z, \cdot) = \langle 1, 2 \rangle$

The maximum rate of change is
$$|\nabla f(2,0)| = |\langle 1,2 \rangle| = J_5$$

Example. Suppose S is a surface with equation F(x, y, z) = k, that is, it is a level surface of a function F of three variables, and let $P(x_0, y_0, z_0)$ be a point on S. What is an equation of the tangent plane to the level surface F(x, y, z) = k at $P(x_0, y_0, z_0)$?



- · Let C be any curve on S that passes through P
 - · C is described by a vector function

$$r^2(t) = \langle x(t), y(t), z(t) \rangle$$
where, say, $r^2(t_0) = P$

· Since C is on the surface, F(x(+), y(+), z(+)) = k

By the chain rule,
$$\frac{\partial F}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial F}{\partial y} \cdot \frac{dy}{dt} + \frac{\partial F}{\partial z} \cdot \frac{dz}{dt} = 0$$

- 'We can rewrite this as VF. 7'(t) = 0
- · In particular, when t=to, this says $\nabla F(x_0, y_0, z_0) \cdot \vec{r}'(t_0) = 0$
- · Conclude: $\nabla F(x_0, J_0, z_0)$ is orthogonal to the tongent vector $\vec{\Gamma}'(t_0)$ to any curve passing through P

Use VF as the normal vector to the tongent plane.

Fx (x0, y0, 2) (x-x) + Fy (x0, y0, 2) (y-y0) + Fz (x0, y0, 20) (z-70) = 0

Question. How is the equation of a tangent plane to a surface S that is the graph of a function f of two variables a special case of the above?

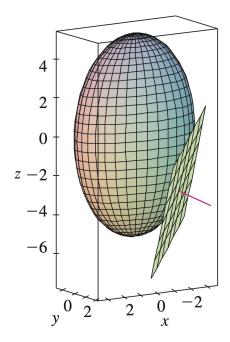
If S is the graph of z = f(x,y), we can let F(x,y,z) = f(x,y) - z and consider the level surface F(x,y,z) = 0.

Then $F_{x}(x_{0}, y_{0}, z_{0}) = f_{x}(x_{0}, y_{0})$ $F_{y}(x_{0}, y_{0}, z_{0}) = f_{y}(x_{0}, y_{0})$ $F_{z}(x_{0}, y_{0}, z_{0}) = -1$

In this case, we get

$$f_x(x_0,y_0)(x-x_0) + f_y(x_0,y_0)(y-y_0) - (z-z_0) = 0$$

Example. Find the equation of the tangent plane at the point to the ellipsoid $\frac{x^2}{4} + y^2 + \frac{z^2}{9} = 3$.



- · Let $F(x,y,z) = \frac{x^2}{4} + y^2 + \frac{z^2}{4}$
- The ellipsoid is the level surface F(x,y,z)=3
- . We have

$$F_{x}(x,y,z) = \frac{x}{2} \implies F_{x}(-2,1,-3) = -1$$

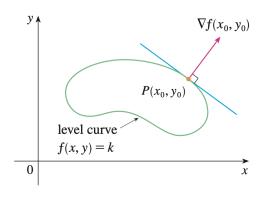
$$F_{y}(x,y,z) = 2y \implies F_{y}(-2,1,-3) = 2$$

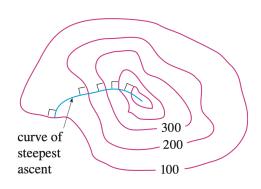
$$F_{z}(x,y,z) = \frac{2z}{9} \implies F_{z}(-2,1,-3) = -\frac{2}{3}$$

The tongent plane is

$$-1(x+2) + 2(y-1) - \frac{2}{3}(z+3) = 0$$

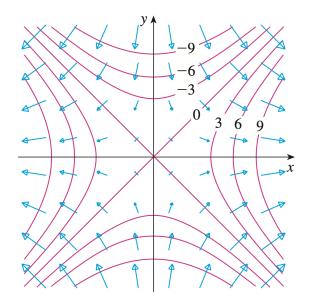
Question. For a function f of two variables, explain how the gradient vector $\nabla f(x_0, y_0)$ gives the direction of fastest increase of f.





- · We showed that for a function F(x,y,z), ∇F is orthogonal to any level surface F(x,y,z)=k.
- · A similar calculation shows for a function f(x,y), Tf
 is orthogonal to any level curve f(x,y) = K
- . This corresponds to TF pointing in the direction of fastest increase.

Example. The picture below is a contour map of the function $f(x,y) = x^2 - y^2$. Gradient vectors at various points have also been plotted. This is called a gradient vector field.



The gradient Vectors are perpendicular to the level curves.