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11.6 Directional Derivatives and the Gradient Vector

Question. What is the idea of a directional derivative?

P(xo, Yo, Zo)

+ Gen  an w\u’;nrs um) Veedor W = <a,b7, the verkca|

lee. n the dicechon L \i inteRAS S in a curve C.

- The sler, of he “'0&'\3&0\“ lae T 4+ the curve €
ab dhe poink P ois yhe decivubive of 2=F0x9) in

-

$he direckhon & W



Definition. What is the limit definition of the directional derivative of f at (zo,yo) in the

direction of a unit vector @ = (a, b)?
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Remark. Explain how the partial derivatives f, and f, are special cases of the directional

derivative.
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Theorem. If f is a differentiable function of x and y, how to compute the directional derivative

in the direction of a unit vector @ = (a, b)?
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Example. Find the directional derivative D, f(x,y) if f(x,y) = 23 — 3zy + 4y? and @ is the unit
vector given by the angle § = w/6. What is D, f(1,2)?
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Question. How can the directional derivative of a differentiable function be written as the dot
product of two vectors?
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Definition. If f is a function of two variables x and y, what is the gradient of f?
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Remark. Rewrite the expression for the directional derivative of a differentiable function using

VF.
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Example. Find the directional derivative of the function f(z,y) = 2%y® — 4y at the point (2, —1)
in the direction of the vector ¥ = 2i + 5j.
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Definition. For a function f(z,y, z) of three variables, what is the limit definition of the
directional derivative of f at (xq,yo, z0) in the direction of a unit vector 4 = (a, b, c)?
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Definition. For a function f(z,y, z) of three variables, how to compute the directional derivative
of f at (x,yo, 20) in the direction of a unit vector @ = (a, b, c)?
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Definition. For a function f(z,y, z) of three variables, what is the gradient vector of f7 Rewrite
the formula for the directional derivative of using the gradient vector.
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Example. Let f(z,y,2) = zsinyz.
(a) Find the gradient of f

(b) Find the directional derivative of f at (1,3,0) in the direction of 7 =7 + 2j — k.
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Theorem. Suppose we have a function f of two or three variables and we consider all possible
directional derivatives of f at a given point. In which of these directions does f change fastest
and what is the maximum rate of change?
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Example. If f(x,y) = xze?, find the rate of change of f at the point P(2,0) in the direction from
P to Q(3,2). In what direction does f have the maximum rate of change? What is this maximum
rate of change?
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Example. Suppose S is a surface with equation F'(x,y, z) = k, that is, it is a level surface of a

function F' of three variables, and let P(zg,yo, 20) be a point on S. What is an equation of the
tangent plane to the level surface F(z,y,z) = k at P(xo, Yo, 20)?
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Question. How is the equation of a tangent plane to a surface S that is the graph of a function f
of two variables a special case of the above?
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Question. For a function f of two variables, explain how the gradient vector V f(xo,yo) gives the
direction of fastest increase of f.
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Example. The picture below is a contour map of the function f(z,y) = 22 — y?. Gradient
vectors at various points have also been plotted. This is called a gradient vector field.
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