Cko\m?

Lecture Notes Name:
Math 2400 - Calculus III
Spring 2024

11.5 The Chain Rule

Question. For functions of more than one variable, the chain rule has several versions. What are
the three different cases that we will be looking at?
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Definition (Chain Rule: Case 1). Suppose that z = f(z,y) is a differentiable function of z and
y, where z = g(t) and y = h(t) are both differentiable functions of ¢. What is the chain rule in

this case?
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Example. If z = 2%y + 32y*, where 2 = sin 2t and y = cost, find d—i when t = 0.
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Question. In the above example, suppose that z = T'(z,y) = 2%y + 3xy* represents the
temperature at the point (z,y). What does d—j mean?
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Definition (Chain Rule: Case 2). Suppose that z = f(z,y) is a differentiable function of z and
y, where z = g(s,t) and y = h(s,t) are differentiable functions of s and ¢. What is the chain rule

in this case?
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Example. If z = e siny, where x = st and y = s%¢, find s and T
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Definition (Chain Rule: General Version). Suppose that u is a differentiable function of the n

variables x1, xo,...,

x, and each z; is a differentiable function of the m variables t1,t, ..., tp.

What is the chain rule in this case?
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Example. Write out the chain rule for the case where w = f(z,y, z,t) and x = z(u, v),
y =y(u,v), z = z(u,v), and t = t(u,v).
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Example. If u = 2y + 4?23, where © = rse!, y = rs

when r =2,s=1,f{=0.
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Definition. Suppose that an equation of the form F'(x,y) = 0 defines y implicitly as a
d
differentiable function of . How can we use the chain rule to solve for d—y"
T

Use +he chain rle o difernhate F(x,y) =0
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Definition. Suppose that an equation of the form F'(x,y,z) = 0 defines z implicitly as a

differentiable function of x and y. How can we use the chain rule to solve for gz and g;?
Wse +the chain rule to differentiate F
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