Lecture Notes Math 2400 - Calculus III Spring 2024 Name: Champ

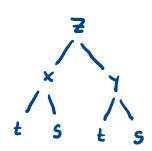
## 11.5 The Chain Rule

**Question.** For functions of more than one variable, the chain rule has several versions. What are the three different cases that we will be looking at?

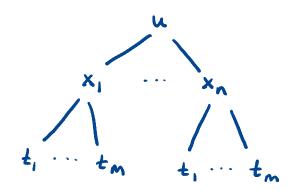
D Z is a function of x and y and x and y are both functions of t.



2 is a function of x and y and x and y are functions of t and s.



3 u is a function of x1,..., xn and each xj is a function of t1,..., tm



**Definition** (Chain Rule: Case 1). Suppose that z = f(x, y) is a differentiable function of x and y, where x = g(t) and y = h(t) are both differentiable functions of t. What is the chain rule in this case?

$$\frac{\partial x}{\partial x} \rightarrow \frac{\partial y}{\partial x} \qquad \frac{\partial z}{\partial t} = \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial t} + \frac{\partial z}{\partial z} \cdot \frac{\partial y}{\partial t}$$

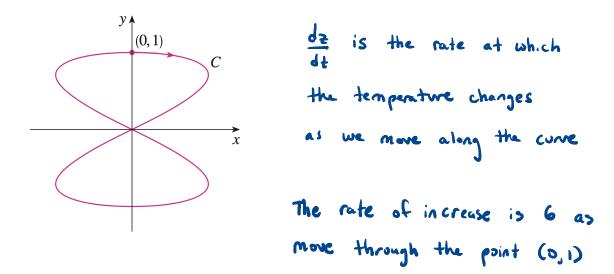
**Example.** If  $z = x^2y + 3xy^4$ , where  $x = \sin 2t$  and  $y = \cos t$ , find  $\frac{dz}{dt}$  when t = 0.

The chain rule says
$$\frac{dz}{dt} = \frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt}$$

$$= (2xy + 3y^4) \cdot (2\cos 2t) + (x^2 + 12xy^3) \cdot (-\sin t)$$
When  $t = 0$ ,  $x = 0$  and  $y = 1$ 

$$\frac{dz}{dt} = (0+3) \cdot (2) + (0+0) \cdot (0) = 6$$

**Question.** In the above example, suppose that  $z = T(x,y) = x^2y + 3xy^4$  represents the temperature at the point (x,y). What does  $\frac{dz}{dt}$  mean?



**Definition** (Chain Rule: Case 2). Suppose that z = f(x, y) is a differentiable function of x and y, where x = g(s, t) and y = h(s, t) are differentiable functions of s and t. What is the chain rule in this case?

$$\frac{\partial f}{\partial s} = \frac{\partial x}{\partial s} \cdot \frac{\partial f}{\partial x} + \frac{\partial y}{\partial s} \cdot \frac{\partial f}{\partial s} + \frac{\partial y}{\partial s} \cdot \frac{\partial y}{\partial s} + \frac{\partial y}{\partial s} \cdot$$

**Example.** If  $z = e^x \sin y$ , where  $x = st^2$  and  $y = s^2t$ , find  $\frac{\partial z}{\partial s}$  and  $\frac{\partial z}{\partial t}$ .

$$\frac{\partial z}{\partial s} = \frac{\partial x}{\partial s} \cdot \frac{\partial x}{\partial s} + \frac{\partial y}{\partial s} \cdot \frac{\partial y}{\partial s} = (e^x \sin y) \cdot (t^2) + (e^x \cos y) \cdot (2st)$$

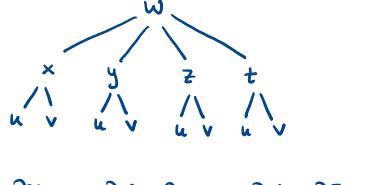
$$\frac{\Im f}{\Im f} = \frac{\Im x}{\Im f} \cdot \frac{\Im f}{\Im x} + \frac{\Im f}{\Im f} \cdot \frac{\Im f}{\Im f} = \left( e_x \sin \lambda \right) \cdot (\Im f) + \left( e_x \cos \lambda \right) \cdot (\Im f)$$

**Definition** (Chain Rule: General Version). Suppose that u is a differentiable function of the n variables  $x_1, x_2, \ldots, x_n$  and each  $x_j$  is a differentiable function of the m variables  $t_1, t_2, \ldots, t_m$ . What is the chain rule in this case?

$$t_1 \cdots t_m \quad t_1 \cdots t_m \cdots t_n \cdots t_m$$

$$\frac{9f!}{9n} = \frac{9x'}{9n} \cdot \frac{9f!}{9x'} + \frac{9x'}{9n} \cdot \frac{9f!}{9x'} + \dots + \frac{9x'}{9n} \cdot \frac{9f!}{9x'}$$

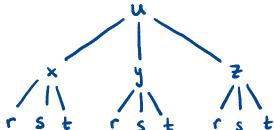
**Example.** Write out the chain rule for the case where w = f(x, y, z, t) and x = x(u, v), y = y(u, v), z = z(u, v), and t = t(u, v).



$$\frac{\partial n}{\partial m} = \frac{\partial x}{\partial m} \cdot \frac{\partial n}{\partial x} + \frac{\partial n}{\partial m} \cdot \frac{\partial n}{\partial x} + \frac{\partial x}{\partial m} \cdot \frac{\partial x}{\partial x} + \frac{\partial x}{\partial m} \cdot \frac{\partial x}{\partial x}$$

$$\frac{3^{1}}{9m} = \frac{3^{1}}{9m} \cdot \frac{3^{1}}{9x} + \frac{3^{1}}{9m} \cdot \frac{3^{1}}{9x} + \frac{3^{1}}{9m} \cdot \frac{3^{1}}{9x} + \frac{3^{1}}{9m} \cdot \frac{3^{1}}{9x}$$

**Example.** If  $u = x^4y + y^2z^3$ , where  $x = rse^t$ ,  $y = rs^2e^{-t}$ , and  $z = r^2s\sin t$ , find the value of  $\frac{\partial u}{\partial s}$  when r = 2, s = 1, t = 0.



$$\frac{\partial u}{\partial s} = \frac{\partial u}{\partial x} \cdot \frac{\partial x}{\partial s} + \frac{\partial u}{\partial y} \cdot \frac{\partial y}{\partial s} + \frac{\partial u}{\partial z} \cdot \frac{\partial z}{\partial s}$$

$$= (4x^{3}y) \cdot (re^{t}) + (x^{4} + 2yz^{3}) \cdot (2rse^{-t}) + (3y^{2}z^{2}) \cdot (r^{2}sint)$$
When  $r=2$ ,  $s=1$ ,  $t=0$  ...  $x=2$ ,  $y=2$ ,  $z=0$ . So,

$$\frac{\partial u}{\partial s} = (64)(2) + (16)(4) + (0)(0) = 192$$

**Definition.** Suppose that an equation of the form F(x,y)=0 defines y implicitly as a differentiable function of x. How can we use the chain rule to solve for  $\frac{dy}{dx}$ ?

Use the chain rule to differentiate F(x,y) = 0

$$\Rightarrow \frac{\partial F}{\partial x} + \frac{\partial F}{\partial y} \cdot \frac{\partial y}{\partial x} = 0$$

2F/2y ≠0, we get

$$\frac{dy}{dx} = \frac{-\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y}} = \frac{-F_x}{F_y}$$

**Example.** Find y' if  $x^3 + y^3 = 6xy$ .

$$\frac{\text{Calc }^{2}}{3x^{2}+3y^{2}}\cdot\frac{dy}{dx} = 6\left[x\cdot\frac{dy}{dx}+y\cdot1\right]$$

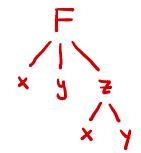
Define  $F(x,y) = x^3 + y^3 - 6xy$ 

Then

$$\frac{dy}{dx} = \frac{-F_X}{F_y} = -\frac{3x^2 - 6y}{3y^2 - 6x} = -\frac{x^2 - 2y}{y^2 - 2x}$$

**Definition.** Suppose that an equation of the form F(x, y, z) = 0 defines z implicitly as a differentiable function of x and y. How can we use the chain rule to solve for  $\frac{\partial z}{\partial x}$  and  $\frac{\partial z}{\partial y}$ ?

Use the chain rule to differentiate F(x,y,z) = 0 W.r.t. x and y



$$\bigcirc \frac{\partial F}{\partial x} + \frac{\partial F}{\partial z} \cdot \frac{\partial z}{\partial x} = 0$$

$$\frac{\partial z}{\partial x} = \frac{-\partial F/\partial x}{\partial F/\partial z} \qquad AND \qquad \frac{\partial z}{\partial y} = \frac{-\partial F/\partial y}{\partial F/\partial z}$$

**Example.** Find  $\frac{\partial z}{\partial x}$  and  $\frac{\partial z}{\partial y}$  if  $x^3 + y^3 + z^3 + 6xyz = 1$ .

$$\frac{\partial z}{\partial x} = \frac{-F_X}{F_Z} = -\frac{3x^2 + 6yz}{3z^2 + 6xy} = -\frac{x^2 + 2yz}{z^2 + 2xy}$$

$$\frac{\partial z}{\partial y} = \frac{-F_y}{F_z} = -\frac{3y^2 + 6xz}{3z^2 + 6xy} = -\frac{y^2 + 2xz}{z^2 + 2xy}$$

Note: We did this computation in §11.3