11.4 Tangent Planes and Linear Approximations

Question. Suppose a surface S has equation z = f(x, y), where f has continuous first partial derivatives. What is the tangent plane to the surface S at the point P?

Question. Suppose f has continuous partial derivatives. What is an equation of the tangent plane to the surface z = f(x, y) at the point $P(x_0, y_0, z_0)$? Relate this to the equation of a tangent line of a function f(x).

Example. Find the tangent plane to the elliptic paraboloid $z = 2x^2 + y^2$ at the point (1, 1, 3).

Definition. What is the linearization of f(x,y) at (a,b)? What is the linear approximation of f(x,y) at (a,b)?

Example. Find the linearization of $f(x,y)=xe^{xy}$ at (1,0) . Then use it to approximate f(1.1,-0.1).

Example. How can we find the tangent plane to a parametric surface S traced out by a vector function

$$\vec{r}(u,v) = x(u,v)\vec{i} + y(u,v)\vec{j} + z(u,v)\vec{k}$$

at a point P_0 with position vector $\vec{r}(u_0, v_0)$?

Example. Find the tangent plane to the surface with parametric equations $x = u^2$, $y = v^2$, z = u + 2v at the point (1, 1, 3).

