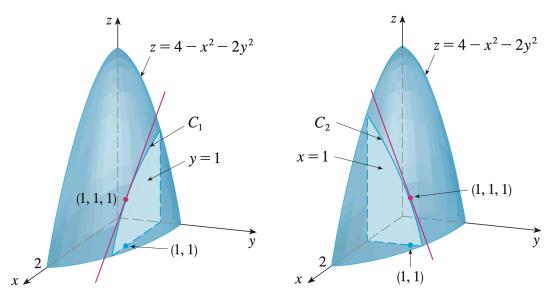

| Lecture Notes        |     |
|----------------------|-----|
| Math 2400 - Calculus | III |
| Spring 2024          |     |

| Name: |  |
|-------|--|
| Name: |  |

## 11.3 Partial Derivatives

Question. What is a partial derivative geometrically?

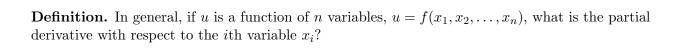



**Definition.** What are the partial derivatives of f(x, y)?

**Remark.** How to compute the partial derivatives of z = f(x, y)?

**Remark.** If z = f(x, y), what are various notations for the partial derivatives?

**Example.** If  $f(x,y) = x^3 + x^2y^3 - 2y^2$ , find  $f_x(2,1)$  and  $f_y(2,1)$ .

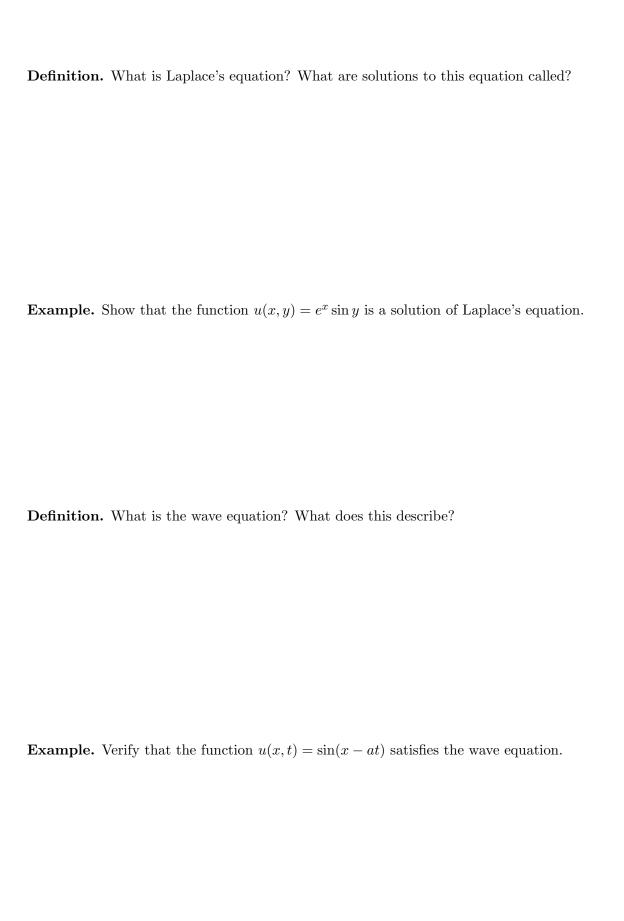

**Example.** If  $f(x,y) = 4 - x^2 - 2y^2$ , find  $f_x(1,1)$  and  $f_y(1,1)$  and interpret these numbers as slopes.



**Example.** If  $f(x,y) = \sin\left(\frac{x}{1+y}\right)$ , calculate  $\frac{\partial f}{\partial x}$  and  $\frac{\partial f}{\partial y}$ .

**Example.** Find  $\frac{\partial z}{\partial x}$  and  $\frac{\partial z}{\partial y}$  if z is defined implicitly as a function of x and y by the equation

$$x^3 + y^3 + z^3 + 6xyz = 1$$




**Example.** Find  $f_x, f_y$ , and  $f_z$  if  $f(x, y, z) = e^{xy} \ln(z)$ .

**Definition.** What are the second partial derivatives of z = f(x, y)?

**Example.** Find the second partial derivatives of  $f(x,y) = x^3 + x^2y^3 - 2y^2$ .

**Theorem.** What does Clairaut's Theorem say about mixed partials?

