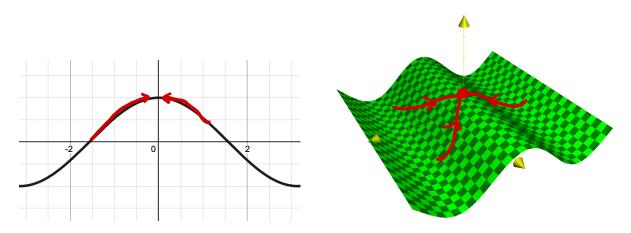
Xーフィー

11.2 Limits and Continuity

Question. How is evaluating limits of functions in three dimensions different from evaluating limits in two dimensions?



In 2D, for
$$\lim_{x\to a} f(x) = L$$
, we need to check $\lim_{x\to a} f(x) = L$

In 3D, for
$$\lim_{(x,y)\to(0,b)} f(x,y) = 1$$
, we need to check

Definition. What does it mean for the limit of f(x,y) as (x,y) approaches (a,b) to be L?

lim
$$f(x,y) = L$$
 if we can make the values of $(x,y) \rightarrow (a,b)$
 $f(x,y)$ as close to L as we like by taking (x,y) Sufficiently close to (a,b) , but not equal to (a,b) .

Question. How can we easily show that $\lim_{(x,y)\to(a,b)} f(x,y)$ does not exist?

- · Showing a limit exists is hord, because we must check infinitely many paths.
- · To show a limit does not exist, can find two paths along which flx, y) approaches different values.

Example. Show that $\lim_{(x,y)\to(0,0)} \frac{x^2-y^2}{x^2+y^2}$ does not exist.



The x-axis:

In this case, y=0, So $f(x,0) = \frac{x^2-0}{x^2+0^2} = 1$

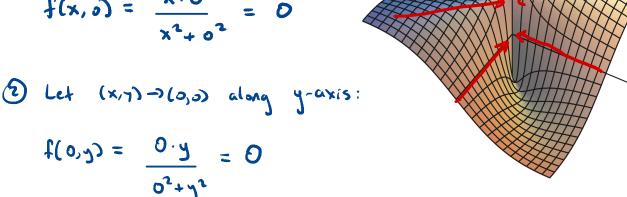
Hence $f(x,y) \rightarrow 1$ as $(x,y) \rightarrow (0,0) \text{ along the}$ x-axis.

Approach (0,0) along the y-axis. In this case, x=0, so $f(0,y) = \frac{0-y^2}{0+y^2} = -1$. Hence $f(x,y) \rightarrow -1$ as $(x,y) \rightarrow (0,0)$ along the y-axis.

Conclude: The limit does not exist.

Example. Does $\lim_{(x,y)\to(0,0)} \frac{xy}{x^2+y^2}$ exist?

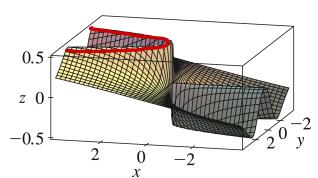
$$f(x, o) = \frac{x \cdot 0}{x^2 + o^2} = 0$$



This is not enough to conclude f(x,y) -0.

3) Let
$$(x,y) \to (x,y) = \frac{x \cdot x}{x^2 + x^2} = \frac{x^2}{2x^2} = \frac{1}{2}$$

Conclude: Since we have obtained different limits along different paths, the limit does not exist. **Example.** Does $\lim_{(x,y)\to(0,0)} \frac{xy^2}{x^2+y^4}$ exist?



- To save time, let $(x_1y) \rightarrow (0,0)$ along any nonvertical line y = mx.
- $\cdot \int (x/4) = f(x, wx) = \frac{x \cdot m^2 x^2}{x^2 + m^4 x^4} = \frac{m^2 x^3}{m^2 x^4} = \frac{1 + m^4 x^2}{1 + m^4 x^2}$
- · Hence $f(x,y) \rightarrow 0$ as $(x,y) \rightarrow (0,0)$ along y = mx
- . This is not enough to show the limit exists.
- · Let $(x,y) \rightarrow (0,0)$ along the parabola $x=y^2$
- $f(x,4) = f(\lambda_5, \lambda) = \frac{(\lambda_5)_5 + \lambda_4}{\lambda_5 \cdot \lambda_5} = \frac{3\lambda_4}{\lambda_5} = \frac{5}{1}$
- Hence $f(x,y) \rightarrow \frac{1}{2}$ as $(x,y) \rightarrow (0,0)$ along $x=y^2$

Conclude: the limit does not exist.

Example. Find $\lim_{(x,y)\to(0,0)} \frac{3x^2y}{x^2+y^2}$ if it exists.

We suspect the limit is 0:

$$f(x,0) = \frac{0}{x^2} = 0$$
if is 0 along the x-axis

- · To prove a limit exists, we must use the Squeeze Theorem
- · The difference between f(x,y) and 0 is

$$\left| \frac{3x^2y}{x^2+y^2} - 0 \right| = \left| \frac{3x^2y}{x^2+y^2} \right| = \frac{3x^2|y|}{x^2+y^2}$$

- Since $y^2 \ge 0$, we know $x^2 + y^2 \ge x^2$. Hence $\frac{x^2}{x^2 + y^2} \le 1$. $\Rightarrow 0 \le \frac{3x^2|y|}{x^2 + y^2} \le 3|y|$
- Since $\lim_{(x,y)\to(0,0)} 0 = 0$ and $\lim_{(x,y)\to(0,0)} 3|y| = 0$, we conclude $\lim_{(x,y)\to(0,0)} \frac{3x^2|y|}{x^2+y^2} = 0$ as well by the squeeze thm.
- We've shown the difference between f(x,y) and O approaches O as $(x,y) \rightarrow (0,0)$. Hence $\lim_{(x,y) \rightarrow (0,0)} (x,y) \rightarrow (0,0)$

Definition. What does it mean for a function f(x, y) to be continuous at (a, b). How to evaluate limits of continuous functions?

- f(x,y) is continuous at (a,b) if $\lim_{(x,y)\to(a,b)} f(x,y) = f(a,b)$
- · We can evaluate limits of continuous functions by direct substitution.

Example. What are some examples of continuous functions?

- · Sums, differences, products, and quotients of Continuous functions are continuous on their domains
- Polynomials and rational functions are continuous

 In their domains

Sum of terms $c \times {}^{m}y^{n}$ e.g. $f(x,y) = \times {}^{4} + 5 \times {}^{3}y^{2} - 7y + 6$ Example. Evaluate $\lim_{(x,y)\to(1,2)} x^{2}y^{2} - x^{3}y^{2} + 3x + 2y$.

- . This is a polynomial, so it is continuous everywhere
- The limit is $1^2 \cdot 2^2 1^3 \cdot 2^2 + 3 \cdot 1 + 2 \cdot 2 = 7$

Example. Where is the function $f(x,y) = \frac{x^2 - y^2}{x^2 + y^2}$ continuous?

- . This is a rational function, so it is continuous on its domain
- · Its domain is the set D = {(xy) | (xy) = (0,0)}

Example. How can we extend things to functions of three or more variables?

$$(x,y,z) \rightarrow (x,y,z) = L \text{ if } f(x,y,z) \rightarrow L \text{ as}$$

• f is continuous at
$$(a,b,c)$$
 if

lim $f(x,y,z) = f(a,b,c)$
 $(x,y,z) \rightarrow (a,b,c)$

Example. Where is the function $f(x, y, z) = \frac{\sqrt{y}}{x^2 - y^2 + z^2}$ continuous?

• Also need
$$x^2-y^2+z^2\neq 0 \Rightarrow y^2\neq x^2+z^2$$

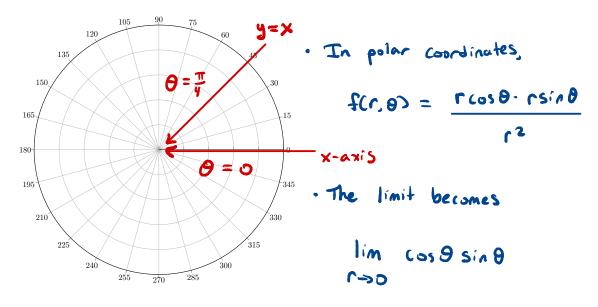
$$D = \{(x,7,2) \mid y \ge 0, y \ne \sqrt{x^2 + 2^2} \}$$

Example. Using the squeeze theorem, we showed that $\lim_{(x,y)\to(0,0)} \frac{3x^2y}{x^2+y^2} = 0$. Use polar coordinates to again show that this limit is 0. What does the squeeze theorem look like in this case?

• If we convert
$$(x,y)$$
 to (r,θ) , then $(x,y) \rightarrow (0,0)$ becomes $r \rightarrow 0$

$$\lim_{(x,y)\to(0,0)} \frac{3x^2y}{x^2+y^2} = \lim_{r\to 0} \frac{3 \cdot r^2 \cos^2\theta \cdot r \sin\theta}{r^2} = \lim_{r\to 0} 3r \cos^2\theta \sin\theta$$

Example. We showed that $\lim_{(x,y)\to(0,0)} \frac{xy}{x^2+y^2}$ does not exist by showing that $f(x,y)\to 0$ along the x-axis, but $f(x,y)\to \frac{1}{2}$ along the line y=x. What does this look like using polar coordinates?



· Along the line
$$\theta=0$$
, $f(r,0)=\cos(\omega)\sin(\omega)=0$

· Along the line
$$\theta = \frac{\pi}{4}$$
, $f(r, \frac{\pi}{4}) = \cos(\frac{\pi}{4})\sin(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}$. $\frac{\sqrt{2}}{2} = \frac{2}{4} = \frac{1}{2}$

Example. Find $\lim_{(x,y,z)\to(0,0,0)} \frac{xyz}{x^2+y^2+z^2}$ if it exists.

We can use spherical coordinates:

(in spherical coordinates,
$$\rho \to 0^+$$
 $P = 0$
 $P = 0$

$$\lim_{\rho \to 0^+} -\rho \leq \lim_{\rho \to 0^+} \rho \sin^2 \phi \cos \phi \cos \theta \sin \theta \leq \lim_{\rho \to 0^+} \rho$$

$$\lim_{\rho \to 0^+} \rho \cos \phi \cos \theta \cos \theta \sin \theta \leq \lim_{\rho \to 0^+} \rho$$

Example. Find
$$\lim_{(x,y,z)\to(0,0,0)} \frac{xy + yz^2 + xz^2}{x^2 + y^2 + z^4}$$
 if it exists.

All paths need to be in the domain of the function and approach (0,0,0)

Many things to do. Some options:

1) Along the x-axis:
$$f(x,0,0) = \frac{0+0+0}{x^2+0^2+0^2} = 0$$

(2) Along the y-axis:
$$f(0, y, 0) = \frac{0+0+0}{0+y^2+0} = 0$$

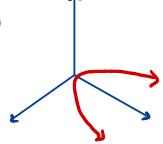
(3) Along
$$y = x$$
 in the $xy - plane$:

$$f(x, x, 0) = \frac{x^2 + 0 + 0}{x^2 + x^2 + 0} = \frac{x^2}{2x^2} = \frac{1}{2}$$

Along a parametric curve: Doubt you will need this $x = t^2$ $y = t^2$ z = t

Important: this curve goes through (0,0,0)

$$f(t^2, t^2, t) = \frac{t^4 + t^4 + t^4}{t^4 + t^4} = 1$$



Conclude : D.N. F.