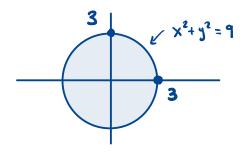
Lecture Notes Math 2400 - Calculus III Spring 2024 Name: Champ

11.1 Functions of Several Variables

Question. What are some ways to represent a function of two or more variables?

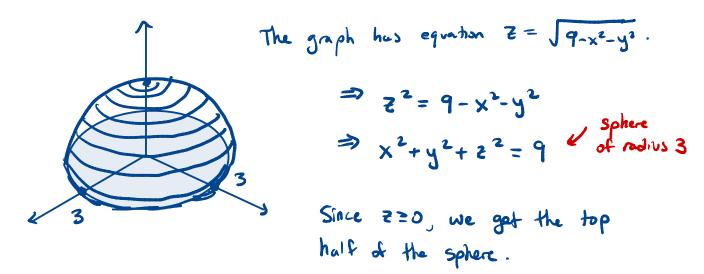
- · So for, we have studied functions flx, y) from their graphs
- · Can also study them numerically (using tobles),
 algebraically Lusing formulas), visually (using level curves I graphs)

Example. The wind-chill index is often used to describe the apparent severity of the cold. This index W is a subjective temperature that depends on the actual temperature T and the wind speed v. So W is a function of T and v, and we can write W = f(T, v). The table below records values of W compiled by the National Weather Service of the US and the Meteorological Service of Canada.


Wind speed (km/h)

Actual temperature (°C)	T^{v}	5	10	15	20	25	30	40	50	60	70	80
	5	4	3	2	1	1	0	-1	-1	-2	-2	-3
	0	-2	-3	-4	-5	-6	-6	-7	-8	-9	-9	-10
	-5	-7	-9	-11	-12	-12	-13	-14	(15)	-16	-16	-17
	-10	-13	-15	-17	-18	-19	-20	-21	-22	-23	-23	-24
	-15	-19	-21	-23	-24	-25	-26	-27	-29	-30	-30	-31
	-20	-24	-27	-29	-30	-32	-33	-34	-35	-36	-37	-38
	-25	-30	-33	-35	-37	-38	-39	-41	-42	-43	-44	-45
	-30	-36	-39	-41	-43	-44	-46	-48	-49	-50	-51	-52
	-35	-41	-45	-48	-49	-51	-52	-54	-56	-57	-58	-60
	-40	-47	-51	-54	-56	-57	-59	-61	-63	-64	-65	-67

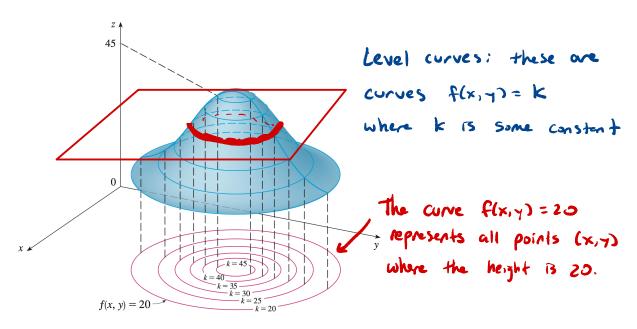
For example, f(-5, 50) = -15


Example. Find the domain and range of $g(x,y) = \sqrt{9 - x^2 - y^2}$

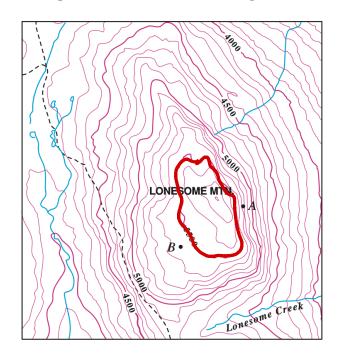
Domain:
$$D = \{(x,y) \mid 9-x^2-y^2 \ge 0\}$$

= $\{(x,y) \mid x^2+y^2 \le 9\}$

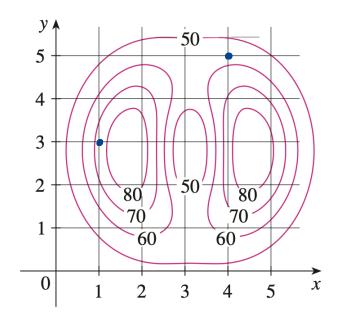
Range: Since $05 \times^2 + y^2 \le 9$ g(x,y) varies from [0,3]


Example. Sketch the graph of $g(x,y) = \sqrt{9 - x^2 - y^2}$.

Remark. Can an entire sphere be represented by a single function of x and y?

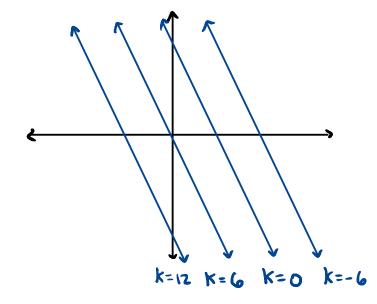

No! A function f(x,y) assigns a pair (x,y) to a unique z-coordinate

Definition. What are the level curves of a function f of two variables?


Another way: The level curves are the horizontal cross-sections of the graph projected down to the xy-plane.

Example. What is a common example of level curves?

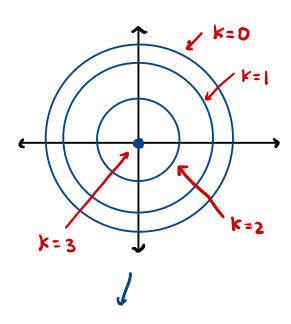
Walking along a Contour line keeps
You at constant elevation.


Example. A contour map for a function f is shown below. Use it to estimate the values of f(1,3) and f(4,5).

(1,3) lies between the level corves Z-values 70 and 80

(4,5) lies between the level curves with Z-values 50 and 60

Example. Sketch the level curves of the function f(x,y) = 6 - 3x - 2y for the values k = -6, 0, 6, 12.


The level curves are

$$6 - 3x - 2y = K$$

$$\Rightarrow$$
 2y = -3x + 6 - k

$$y = -\frac{3}{2} \times + \frac{6-k}{2}$$

Example. Sketch the level curves of the function $g(x,y) = \sqrt{9 - x^2 - y^2}$ for k = 0, 1, 2, 3.

Imagine pulling this up to a hemisphere.

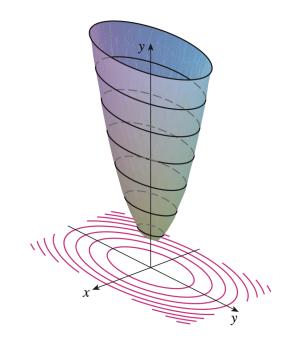
The level curves are

$$\sqrt{9-x^2-y^2} = K$$

$$(-)$$
 $q_{-x^2-y^2} = k^2$

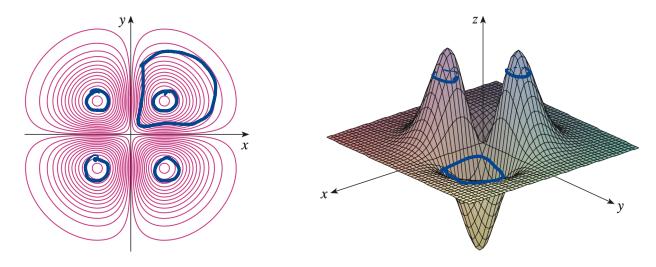
$$\Rightarrow x^2 + y^2 = 9 - k^2$$

family of circles with center (0,0) and radius Jq-K2

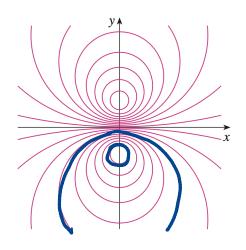

Example. Sketch some level curves of the function $h(x,y) = 4x^2 + y^2 + 1$.

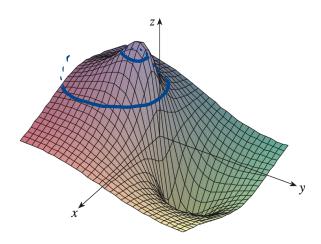
The level curves are

$$4x^2 + y^2 + 1 = K$$


$$\iff \frac{x^2}{\frac{1}{4}(k-1)} + \frac{y^2}{k-1} = 1$$

A family of ellipses with semiaxes $\frac{1}{2}\sqrt{k-1}$ and $\sqrt{k-1}$


Review the equations for types of plane curves: ellipses, hyporbolas, etc...)


Example. Examine the level curves of the function $f(x,y) = -xye^{-x^2-y^2}$.

(Question: Match graph of f(x,y) to its level curves)

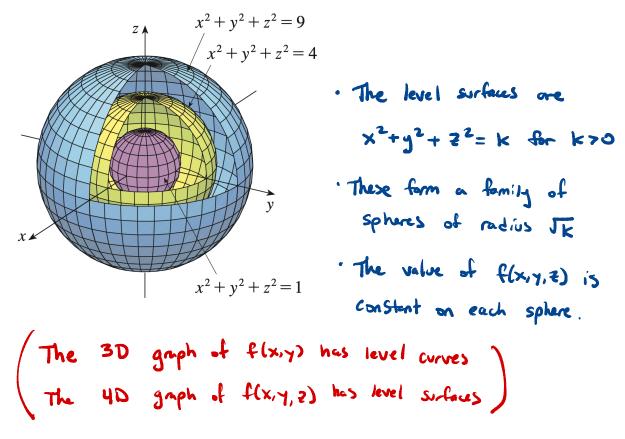
Example. Examine the level curves of the function $f(x,y) = \frac{-3y}{x^2 + y^2 + 1}$.

Definition. What is a function of three variables? Give an example.

A rule
$$f(x,y,z)$$
 that assigns a triple (x,y,z) in a domain in \mathbb{R}^3 to a unique real number.

e.g. The temperature
$$T(x,y,t)$$
 of a point on the earth longitude latitude time

Example. Find the domain of $f(x, y, z) = \ln(z - y) + xy \sin z$.


We need
$$\overline{z}-y > 0$$

$$D = \left\{ (x, y, \overline{z}) \in \mathbb{R}^3 \mid \overline{z} > y \right\}$$

Definition. What are the level surfaces of a function f of three variables?

- · The graph of f(x,y, Z) is a four-dimensional object
- The level surfaces ore surfaces in \mathbb{R}^3 with f(x,y,z)=k
- · If a point moves along a level surface, f(x,7,2)is constant.

Example. Find the level surfaces of the function $f(x, y, z) = x^2 + y^2 + z^2$.

Definition. What is a function of n variables? Give an example.

Remark. How can we use vector notation to write a function of n variables more compactly?