Lecture Notes Math 2400 - Calculus III Spring 2024

 v_{\blacktriangle}

0

Name: Champ

10.5 Parametric Surfaces

Definition. What is a parametric surface?

D

from $\frac{z}{f_{v}}$

Space curve: vector function T(t) of one parameter

Parametric surface: vector function T(u,v) of two parameters

 $\vec{r}(u,v) = \langle x(u,v), y(u,v), \xi(u,v) \rangle$

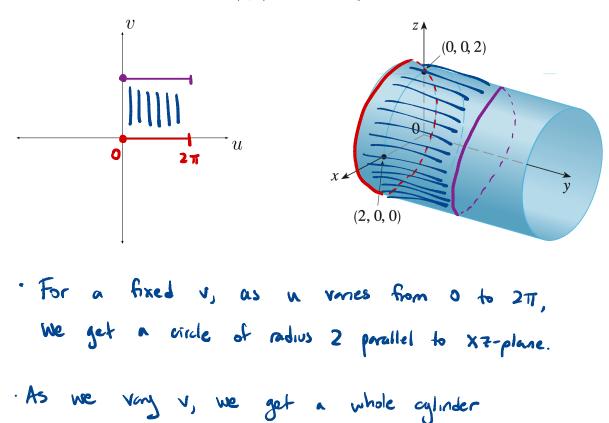
As the parameters u and v vary over a domain D, the points $(x,y,z) \in \mathbb{R}^3$ such that

X = X(u,v) y = y(u,v) z = z(u,v)

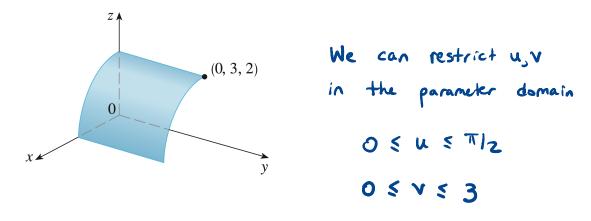
trace out a surface.

Example. Identify and sketch the surface with vector equation

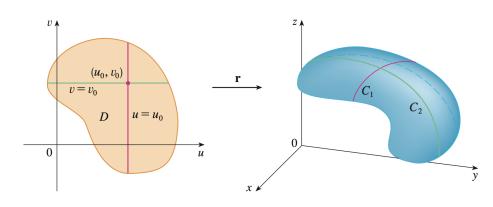
$$\vec{r}(u,v) = 2\cos u\vec{i} + v\vec{j} + 2\sin u\vec{k}$$



Question. How can we modify the previous example to obtain a quarter-cylinder with length 3?



Definition. What are grid curves?



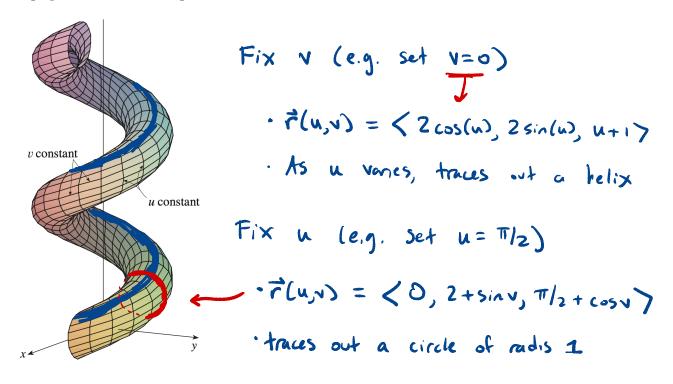
Fix u: The line u=u0 traces a curve C1 as v vorres

Fix v: The line v=v0 traces a curve C2 as u vories

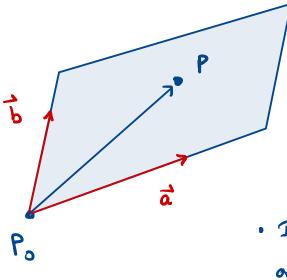
Example. The surface

$$\vec{r}(u,v) = \langle (2+\sin v)\cos u, (2+\sin v)\sin u, u+\cos v \rangle$$

is graphed below. Which grid curves have u constant? Which have v constant?



Example. Find a vector function that represents the plane that passes through the point P_0 with position vector r_0 and that contains two non-parallel vectors \vec{a} and \vec{b} .



• If \vec{r}_0 is the position vector of \vec{P}_0 and \vec{r} is the position vector of \vec{P}_0 then $\vec{r} = \vec{r}_0 + \vec{P}_0 \vec{P} = \vec{r}_0 + u\vec{a} + v\vec{b}$

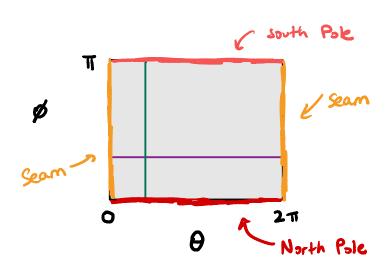
$$\Rightarrow \vec{c}(u,v) = \vec{c} + u\vec{a} + v\vec{b}$$

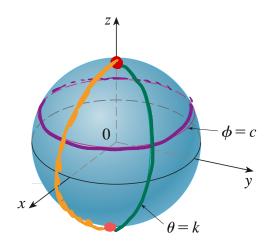
$$\vec{r}(u,v) = \langle x_0, y_0, z_0 \rangle + u \langle \alpha_1, \alpha_2, \alpha_3 \rangle + v \langle b_1, b_2, b_3 \rangle$$

$$\vec{r}(u,v) = \langle x_0 + u\alpha_1 + vb_1, y_0 + u\alpha_2 + vb_2, z_0 + u\alpha_3 + vb_3 \rangle$$

p=a

Example. Find a parametric representation of the sphere $x^2 + y^2 + z^2 = a^2$. What are the grid curves?





From spherical coordinates,

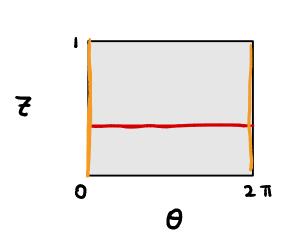
Q: How to parametrize top half of sphere?
A:
$$0 \le \emptyset \le \pi/2$$
, $0 \le \theta \le 2\pi$

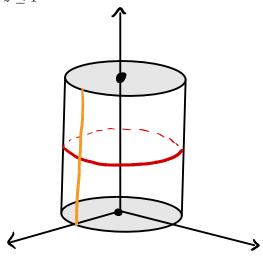
RmK: In topology, this is called an identification space.

Sphere is obtained from the rectangle by gluing points together.

Example. Find a parametric representation for the cylinder

$$x^2 + y^2 = 4 \qquad 0 \le z \le 1$$





- · From cylindrical coordinates, we know r2=4 => r=2
- · To trace out the circles, X=2cos 0, y=2sin0, z=?

Remark. Suppose a surface S is given as the graph of a function of x and y, that is, with an equation of the form z = f(x, y). How can we view S as a parametric surface?

If a surface is the graph of a function f(x,y), we can choose

$$x = x$$
 $\lambda = \lambda$ $S = t(x^{1/2})$

Example. Find a vector function that represents the elliptic paraboloid $z = x^2 + 2y^2$.

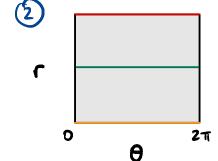
· From the above,

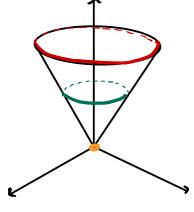
$$\vec{r}(x,y) = \langle x, y, x^2 + 2y^2 \rangle$$

Example. Find a parametric representation for the top half of the cone $z^2 = 4x^2 + 4y^2$.

The top half of the cone

is
$$z = \sqrt{4(x^2+y^2)} = 2\sqrt{x^2+y^2}$$



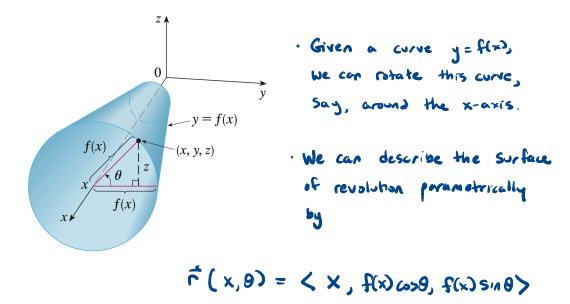


Using cylindrical coordinates

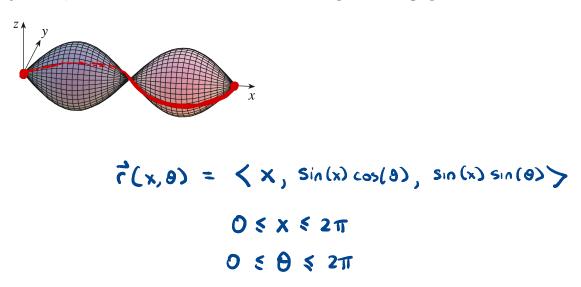
Q: How high should the circle of radius r be?

We know 22= 412 => 7=21

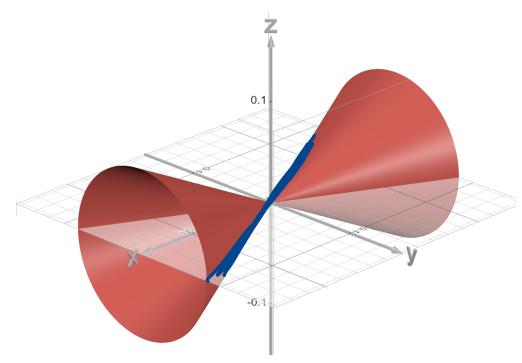
Definition. What is a surface of revolution? How can we represent a surface of revolution parametrically?



Example. Find parametric equations for the surface generated by rotating the curve $y = \sin x, 0 \le x \le 2\pi$ about the x-axis. Use these equations to graph the surface of revolution.



Example. Find a parametric representation for the cone $x^2 = 4(y^2 + z^2)$.



- · Observation: this is a surface of revolution.
- To find the function that we notate, set z=0. $X^2 = 4y^2 \implies y^2 = \frac{1}{4}x^2 \implies y = \pm \frac{1}{2}x$ We can choose the line $y = \frac{1}{2}x$
- $rac{1}{2}(x,\theta) = \langle x, \frac{1}{2} \times \cos(\theta), \frac{1}{2} \times \sin(\theta) \rangle$