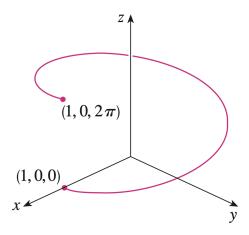
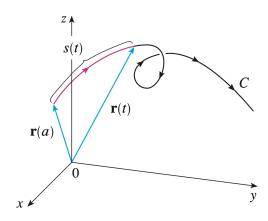

10.3 Arc Length


Question. How do we find the length of a plane curve with parametric equations x = f(t), y = g(t) for $a \le t \le b$?

Definition. How do we find the length of a space curve?

Remark. How can we write the arc length formula more compactly?

Example. Find the length of the arc of the circular helix with vector equation $\vec{r}(t) = \cos t\vec{i} + \sin t\vec{j} + t\vec{k}$ from the point (1,0,0) to the point $(1,0,2\pi)$.



Definition. Can a single curve C be represented by more than one vector function? What is a parametrization? Does are length depend on the parametrization of C?

Definition. Suppose that C is a curve given by a vector function

$$\vec{r}(t) = f(t)\vec{i} + g(t)\vec{j} + h(t)\vec{k}$$
 $a \le t \le b$

where \vec{r}' is continuous and C is traversed exactly once as t increases from a to b. What is the arc length function s(t)?

Remark. Why is it often useful to parametrize a curve with respect to arc length?

Example. Reparametrize the helix $\vec{r}(t) = \cos t\vec{i} + \sin t\vec{j} + t\vec{k}$ with respect to arc length measured from (1,0,0) in the direction of increasing t.