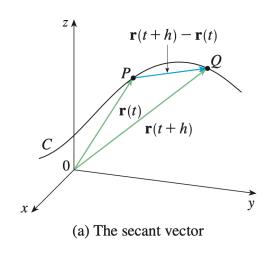
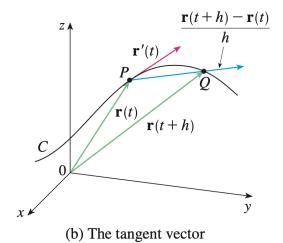
10.2 Derivatives and Integrals of Vector Functions

Definition. What is the derivative of a vector function $\vec{r}(t)$?

Question. Explain the derivative of a vector function geometrically.





Definition. What is the unit tangent vector?

Theorem. If $\vec{r}(t) = \langle f(t), g(t), h(t) \rangle$, where f, g, and h are differentiable functions, show that $\vec{r}'(t) = \langle f'(t), g'(t), h'(t) \rangle$.

Example.

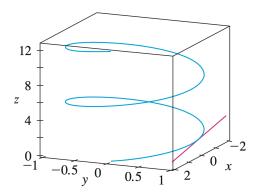
- (a) Find the derivative of $\vec{r}(t) = (1+t^3)\vec{i} + te^{-t}\vec{j} + \sin 2t\vec{k}$.
- (b) Find the unit tangent vector at the point where t = 0.

Example. For the curve $\vec{r}(t) = \sqrt{t}\vec{i} + (2-t)\vec{j}$, find $\vec{r}'(t)$ and sketch the position vector $\vec{r}(1)$ and the tangent vector $\vec{r}'(1)$.

Example. Find parametric equations for the tangent line to the helix with parametric equations

$$x = 2\cos t$$
 $y = \sin t$ $z = t$

at the point $(0, 1, \pi/2)$.



Definition. What is the second derivative of a vector function \vec{r} ? What is the second derivative of the function in the previous example?

Theorem. Suppose \vec{u} and \vec{v} are differentiable vector functions, c is a scalar, and f is a real-valued function. Find differentiation formulas for the following expressions.

1.
$$\frac{d}{dt}[\vec{u}(t) + \vec{v}(t)] =$$

4.
$$\frac{d}{dt}[\vec{u}(t)\cdot\vec{v}(t)] =$$

$$2. \ \frac{d}{dt}[c\vec{u}(t)] =$$

5.
$$\frac{d}{dt}[\vec{u}(t) \times \vec{v}(t)] =$$

$$3. \ \frac{d}{dt}[f(t)\vec{u}(t)] =$$

6.
$$\frac{d}{dt}[\vec{u}(f(t))] =$$

Example. Show that if $\vec{r}(t)$ has constant length, then $\vec{r}(t)$ and $\vec{r}'(t)$ are orthogonal for all t. What does this result mean geometrically?

Question. How can we extend the Fundamental Theorem of Calculus to continuous vector functions?

Example. Find $\int_0^{\pi/2} \vec{r}(t) dt$ if $\vec{r}(t) = 2 \cos t \vec{i} + \sin t \vec{j} + 2t \vec{k}$.