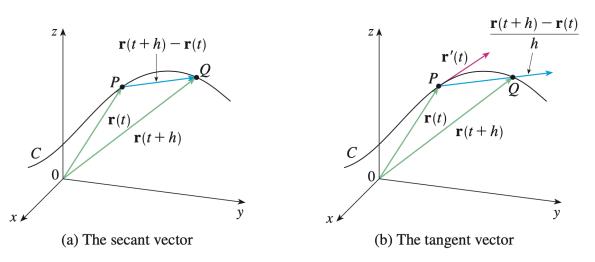
Derivatives and Integrals of Vector Functions

Definition. What is the derivative of a vector function $\vec{r}(t)$?

$$\frac{d\vec{r}}{dt} = \vec{r}'(t) = \lim_{h \to 0} \frac{\vec{r}(t+h) - \vec{r}(t)}{h}$$

Question. Explain the derivative of a vector function geometrically.



- PQ represents 7(t+h)-7(t) ("secont vector")

- As h > 0:
 - · Q approaches P
 - · r(t+h) r(t) approaches the O vector
 - · The scalar multiple in (r(++h)-r(+)) approaches a vector 7'(t) that lies on the tangent line.

Definition. What is the unit tangent vector?

Tangent vector at P:
$$\vec{r}'(t)$$

Tangent line at P: Line through P parallel to $\vec{r}'(t)$

Unit tangent vector: $\vec{T}(t) = \frac{\vec{r}'(t)}{|\vec{r}'(t)|}$

Theorem. If $\vec{r}(t) = \langle f(t), g(t), h(t) \rangle$, where f, g, and h are differentiable functions, show that

To find
$$\vec{r}'(t)$$
, differentiate each component

$$\vec{\Gamma}'(t) = \lim_{\Delta t \to 0} \frac{1}{\Delta t} \left[\vec{\Gamma}(t + \Delta t) - \vec{\Gamma}(t) \right]$$

$$= \lim_{\Delta t \to 0} \frac{1}{\Delta t} \left[\left\langle f(t + \Delta t) - f(t), g(t + \Delta t) - g(t), h(t + \Delta t) - h(t) \right\rangle \right]$$

$$= \left\langle \lim_{\Delta t \to 0} \frac{f(t + \Delta t) - f(t)}{\Delta t}, \lim_{\Delta t \to 0} \frac{g(t + \Delta t) - g(t)}{\Delta t}, \lim_{\Delta t \to 0} \frac{h(t + \Delta t) - h(t)}{\Delta t} \right\rangle$$

$$= \left\langle f'(t), g'(t), h'(t) \right\rangle$$

Example.

- (a) Find the derivative of $\vec{r}(t) = (1+t^3)\vec{i} + te^{-t}\vec{j} + \sin 2t\vec{k}$.
- (b) Find the unit tangent vector at the point where t = 0.

(a)
$$\vec{r}'(t) = \langle 3t^2, -te^{-t}, 2\cos 2t \rangle$$

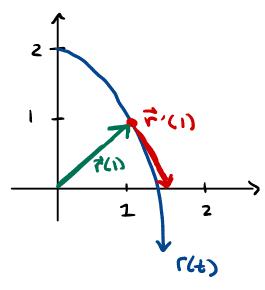
(b)
$$\vec{T}(\delta) = \frac{\vec{r}'(\delta)}{|\vec{r}'(\delta)|} = \frac{\langle 0, 1, 2 \rangle}{\sqrt{0^2 + 1^2 + 2^2}} = \frac{\langle 0, 1, 2 \rangle}{\sqrt{5}}$$

Example. For the curve $\vec{r}(t) = \sqrt{t}\vec{i} + (2-t)\vec{j}$, find $\vec{r}'(t)$ and sketch the position vector $\vec{r}(1)$ and the tangent vector $\vec{r}'(1)$.

$$\vec{r}'(t) = \langle \frac{1}{2}t^{-1/2}, -1 \rangle$$

$$\vec{r}'(t) = \langle \frac{1}{2}, -1 \rangle$$

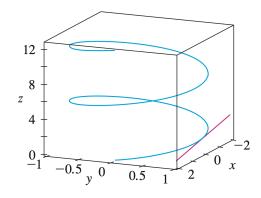
$$\vec{r}'(t) = \langle \frac{1}{2}, -1 \rangle$$



Example. Find parametric equations for the tangent line to the helix with parametric equations

$$x = 2\cos t$$
 $y = \sin t$ $z = t$

at the point $(0, 1, \pi/2)$.



Need to find t corresponding to the point (0, 1, πI_2) $\Rightarrow t = \pi I_2$

$$x = -2t$$

$$y = 1$$

$$z = \frac{\pi}{2} + t$$

Definition. What is the second derivative of a vector function \vec{r} ? What is the second derivative of the function in the previous example?

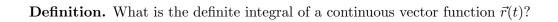
' In the above,
$$f''(t) = \langle -2\cos t, -\sin t, o \rangle$$

Theorem. Suppose \vec{u} and \vec{v} are differentiable vector functions, c is a scalar, and f is a real-valued function. Find differentiation formulas for the following expressions.

1.
$$\frac{d}{dt}[\vec{u}(t) + \vec{v}(t)] = \vec{u}'(t) + \vec{v}'(t)$$
2.
$$\frac{d}{dt}[c\vec{u}(t)] = c \vec{u}'(t)$$
3.
$$\frac{d}{dt}[f(t)\vec{u}(t)] = f'(t)\vec{u}(t) + f(t)\vec{u}'(t)$$
6.
$$\frac{d}{dt}[\vec{u}(f(t))] = f'(t)\vec{u}'(f(t))$$

"Chain wle" Example. Show that if $\vec{r}(t)$ has constant length, then $\vec{r}(t)$ and $\vec{r}'(t)$ are orthogonal for all t.

What does this result mean geometrically?



Question. How can we extend the Fundamental Theorem of Calculus to continuous vector functions?

Example. Find $\int_0^{\pi/2} \vec{r}(t) dt$ if $\vec{r}(t) = 2 \cos t \vec{i} + \sin t \vec{j} + 2t \vec{k}$.