Name: Champ

10.1 Vector Functions and Space Curves

Definition. What is a vector-valued function? What are the component functions of a vector-valued function?

A (3-D) vector-valued function is a function $\vec{r}(t): \mathbb{R} \to V_3$ of the form $\vec{r}(t) = \langle f(t), g(t), h(t) \rangle$

where flt), glt), hlt) are real-valued functions called the component functions of Flt).

Example. Let $\vec{r}(t) = \langle t^3, \ln(3-t), \sqrt{t} \rangle$. What are the component functions? What is the domain of $\vec{r}(t)$?

Component functions: $f(t) = t^3$ $g(t) = \ln(3-t)$ $h(t) = \int_{-t}^{t} \int_{-t}^$

Domain: [0,3)

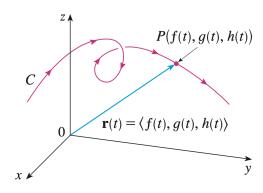
Definition. How to take a limit of a vector-valued function?

- . Take the limits of the component functions
- · lim r(t) = < lim f(t), lim g(t), lim h(t) > tan ton

provided these limits exist.

Example. Find $\lim_{t\to 0} \vec{r}(t)$, where $\vec{r}(t) = (1+t^3)\vec{i} + te^{-t}\vec{j} + \frac{\sin t}{t}\vec{k}$.

$$\lim_{t\to 0} \vec{r}(t) = \left[\lim_{t\to 0} 1 + t^3\right] \vec{l} + \left[\lim_{t\to 0} te^{-t}\right] \vec{J} + \left[\lim_{t\to 0} \frac{\sin t}{t}\right] \vec{k}$$


$$= \vec{l} + \vec{k}$$

$$= \langle 1, 0, 1 \rangle$$

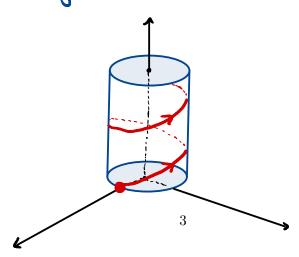
Definition. What does it mean for a vector function $\vec{r}(t)$ to be continuous at a?

.
$$\vec{r}(t)$$
 is continuous at a if $\lim_{t\to a} \vec{r}(t) = \vec{r}(a)$

Definition. What is a space curve?

As t varies, the tip
of a continuous vector
function it(t) traces out
a space curve C.

Example. Describe the curve defined by the vector function $\vec{r}(t) = \langle 1+t, 2+5t, -1+6t \rangle$.


$$\vec{r}(t) = \langle 1, 2, -1 \rangle + t \langle 1, 5, 6 \rangle$$

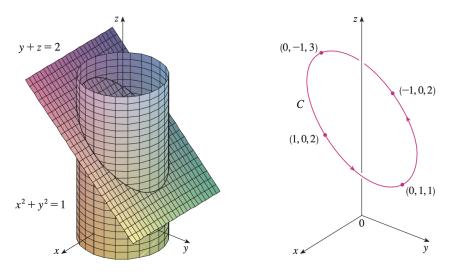
= $\vec{r}_0 + t \vec{v}$

Remark. Plane curves can also be represented in vector notation. How would we write the curve given by the parametric equations $x = t^2 - 2t$ and y = t + 1 in vector notation?

Example. Sketch the curve whose vector equation is $\vec{r}(t) = \cos t \vec{i} + \sin t \vec{j} + t \vec{k}$.

- . The parametric equations are x = cost y = sint z = t
- · Note: $x^2 + y^2 = 1 \Rightarrow$ The curve his on a cylinder
- · We traverse the cylinder counterclockwise and slowly increase ?

Example. Find a vector equation for the line segment that joins the point P(1,3,-2) to the point Q(2,-1,3).


. To join the tip of vector
$$\vec{r}_0$$
 to the tip of vector \vec{r}_1

we can use $\vec{r}(t) = (1-t)\vec{r}_0 + t\vec{r}_1$, $0 \le t \le 1$

At $t = 0$, at \vec{r}_0

• In this case,
$$\vec{r}(t) = (1-t)(1,3,-27+t(2,-1,3),0 \le t \le 1$$

= $<1+t$, $3-4t$, $-2+5t$, $0 \le t \le 1$

Example. Find a vector function that represents the curve of intersection of the cylinder $x^2 + y^2 = 1$ and the plane y + z = 2.

· The plane and the cylinder intersect in an ellipse C

• If we project C to the
$$xy$$
-plane, we get a circle $\Rightarrow x = cost$ $y = sint$ $z = ?$ $0 \le t \le 2\pi$

· Since C is on the plane, Z = 2-y = 2-sint