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Topics Covered

The final exam assesses a broad range of topics from Calculus II. Each topic below includes a brief description of
the associated concepts and skills.

Integration Techniques

• u-substitution: A foundational method for reversing the chain rule and simplifying integrals by changing
variables.

• Integration by parts: A technique based on the product rule for differentiation, useful for integrating
products of functions.

• Partial fractions: A strategy for decomposing rational functions into simpler fractions that can be inte-
grated individually.

• Trigonometric integrals: Involves using trigonometric identities to integrate expressions containing sin,
cos, tan, etc.

• Trigonometric substitution: A method for integrating expressions involving square roots by substituting
trigonometric functions.

Applications of Integration

• Improper integrals: Integrals with infinite limits or discontinuous integrands, evaluated using limits.

• Volume of solids: Methods such as the disk, washer, and shell techniques to compute the volume of solids
of revolution or known cross-section.

• Average value of a function: Calculates the mean output of a continuous function over an interval.

• Work problems: Models the work done by a force (e.g., in stretching a spring or lifting a rope or liquid)
using integrals.

• Center of mass: Uses integrals to determine the average position (centroid) of a system with uniform or
variable density.

Parametric and Polar Equations

• Parametric curves: Curves defined by separate equations for x(t) and y(t), including slope, tangent lines,
and arc length.

• Polar curves: Curves defined by r = f(θ); includes plotting, finding tangent lines, arc length, and comput-
ing enclosed area.

Sequences and Series

• Understanding sequences and series: Examines convergence through partial sums and visual behavior
of infinite processes.

• Telescoping series: A series where terms cancel in a way that makes the sum easy to evaluate.

• Convergence tests: Methods to determine whether a series converges or diverges:

– Divergence Test: Uses the limit of the terms to identify divergence.

– Geometric Series Test: Applies to series of the form arn.

– Integral Test: Compares a series to an improper integral.

– p-series Test: Tests series of the form
∑

1/np.
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– Comparison Tests: Compares a given series to a known benchmark.

– Alternating Series Test: Applies to series whose terms alternate in sign and decrease in magnitude.

– Ratio Test: Uses the ratio between successive terms to assess convergence.

• Absolute vs. conditional convergence: Distinguishes series that converge absolutely (when all terms
are made positive) from those that only converge conditionally.

Power Series and Taylor Series

• Radius and interval of convergence: Identifies where a power series converges using the Ratio Test.

• Creating new power series: Uses algebraic manipulation and substitution to derive new series from
known ones.

• Using known Maclaurin series: Substitutes or transforms standard series (like those for ex, sinx, etc.)
to match new functions.

• Taylor polynomials and series: Represents a function locally as a polynomial or infinite series centered
at a point a.

Series Remainder Estimates

• Alternating Series Remainder Estimate: Gives an upper bound on error when truncating an alternating
series.

• Remainder bound from the Integral Test: Uses improper integrals to bound the remainder of positive
decreasing series.

• Taylor’s Inequality: Provides a bound on the error when approximating a function with a Taylor polyno-
mial.

Differential Equations

• Separable differential equations: Solves differential equations by separating variables and integrating
both sides.

• Initial value problems: Uses given conditions to find particular solutions to differential equations.
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11.8 Power Series

Definition. A power series centered at a is an infinite series of the form

∞∑
n=0

cn(x− a)n

where cn are constants called the coefficients, a is the center, and x is the variable. The series may
converge for some values of x and diverge for others.

• Radius of Convergence R:

– The power series converges absolutely when |x− a| < R and diverges when |x− a| > R.

– If |x− a| = R, convergence must be checked separately at each endpoint.

– R can often be found using the Ratio Test:

R = lim
n→∞

∣∣∣∣ cn
cn+1

∣∣∣∣ (if the limit exists).

• Interval of Convergence:

– The interval may be a single point, a finite interval, or the entire real line.

– Typically has the form (a−R, a+R), [a−R, a+R], (a− r, a+R], or [a− r, a+R), depending
on endpoint behavior.

Question Type Description

1. Find Radius and Interval of Convergence Compute radius R and interval I using the Ratio
Test.

2. Determine Radius from Convergence or Diver-
gence Behavior

Infer R based on where the series converges or di-
verges.

3. Identify Center and Radius from Interval or Se-
ries Form

Find center and radius from interval descriptions or
series structure.

4. Analyze Specific Points Relative to Convergence Determine whether a given point lies inside, outside,
or on the boundary of convergence.

5. Endpoint and Boundary Behavior Identify where convergence must be checked sepa-
rately (endpoints) or is not guaranteed.
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Free Response Practice

For each series below, find the radius of convergence R and the interval of convergence I.

1.
∞∑
n=1

(2x− 5)n

n · 3n

2.
∞∑
n=1

n2(x+ 4)n

7n

3.
∞∑
n=0

(x− 1)n

n!

4.
∞∑
n=1

(x+ 2)2n

5n

5.
∞∑
n=1

(−1)n(3x)n

n2

6.
∞∑
n=1

xn

(n+ 2)!

7.
∞∑
n=2

(x− 7)n

n ln(n)

8.
∞∑
n=0

n!(x+ 1)n

nn

9.
∞∑
n=1

(2x− 3)2n

n4n

10.
∞∑
n=1

n(x− 5)n

2n(n+ 1)
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Multiple Choice Practice

1. The power series

∞∑
n=0

an(x− 1)n

converges at x = 3. At which of the following x-
values must the given power series also converge?

(A) x = 4

(B) x = −2

(C) x = 0

(D) x = 5

(E) x = −5

2. The power series

∞∑
n=0

bn(x− 4)n

converges at x = 6. At which of the following x-
values must the given power series also converge?

(A) x = 2

(B) x = 5

(C) x = 8

(D) x = 10

(E) x = 1

3. Suppose the power series
∑

an(x − 1)n converges
for −2 < x < 4. Which of the following statements
is true?

(A) The radius of convergence is 2.

(B) The radius of convergence is 3.

(C) The radius of convergence is 4.

(D) The center is at x = 0.

(E) The center is at x = −1.

4. Which of the following would definitely cause a
power series centered at x = 2 with radius 3 to
diverge?

(A) Evaluating at x = 4

(B) Evaluating at x = 1

(C) Evaluating at x = 5

(D) Evaluating at x = −2

(E) Evaluating at x = −1

5. Suppose the radius of convergence of
∑

an(x+4)n

is 6. Which value must be checked separately to
determine convergence?

(A) x = 6

(B) x = 4

(C) x = −10

(D) x = 10

(E) x = −2

6. Suppose
∑

pn(x + 2)n has radius of convergence
4. At which of the following points is convergence
not guaranteed?

(A) x = 0

(B) x = 1

(C) x = −5

(D) x = −1

(E) x = 2
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11.9 Representing Functions as Power Series

Geometric Series

1

1− x
=

∞∑
n=0

xn, |x| < 1

1

1 + x
=

∞∑
n=0

(−1)nxn, |x| < 1

Substitution & Algebraic Manipulation

• Replace x 7→ ax:
1

1− ax
=

∑
anxn, |ax| < 1.

• Factor constants:
1

b− x
=

1

b

1

1− x
b

=

∞∑
n=0

b−n−1xn, |x| < |b|.

• Combine series: multiply by xk, add/subtract
termwise.

Term-by-Term Differentiation / Integration If
f(x) =

∑∞
n=0 cn(x − a)n has radius R, then on

(a−R, a+R)

f ′(x) =
∞∑
n=1

n cn (x− a)n−1

∫
f(x) dx = C +

∞∑
n=0

cn
(x− a)n+1

n+ 1
.

Radius of convergence remains R (endpoints may
change).

Logarithm & Arctangent

ln(1 + x) =
∞∑
n=1

(−1)n−1 x
n

n
, |x| < 1,

integrate 1
1+x =

∑
(−1)nxn and set C = 0.

arctanx =
∞∑
n=0

(−1)n
x2n+1

2n+ 1
, |x| < 1,

integrate 1
1+x2 =

∑
(−1)nx2n and set C = 0.

Convergence Facts

• Radius R from Ratio Test: R = lim
n→∞

∣∣∣ cn
cn+1

∣∣∣.
• Interval is (a−R, a+R); test x = a±R sepa-
rately.

• Within interval, series defines a continuous,
infinitely-differentiable function.

Question Type Description

1. Geometric Series Substitution Express a rational function as a geometric series by substitution
and/or factoring.

2. Series from Known Maclaurin
Series

Modify a known Maclaurin series (like ln(1+x), arctan(x)) to match
the given function.

3. Integrating a Power Series Represent an integral involving elementary functions by integrating
a known series term-by-term.
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Free Response Practice

1. f(x) =
x

1− 3x

2. f(x) =
4

7 + 2x

3. f(x) =
1

9− x2

4. f(x) =
x2

1 + x

5. f(x) =
1

5− x

6. f(x) = ln(1 + x2)

7. f(x) = arctan(2x)

8. f(x) =
∫ x
0

1

1 + t4
dt

9. f(x) =
∫ x
0

t

1 + t2
dt
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Multiple Choice Practice

1. Which of the following is the correct power series

representation for
1

1 + x
?

(A)

∞∑
n=0

(−1)nxn

(B)
∞∑
n=0

xn

(C)
∞∑
n=0

(−1)n(x− 1)n

(D)

∞∑
n=1

xn

n

(E)

∞∑
n=1

(−1)n−1xn

n

2. What is the power series representation for
arctan(x)?

(A)
∞∑
n=0

(−1)nx2n+1

(B)

∞∑
n=0

x2n+1

(C)
∞∑
n=0

(−1)n
x2n+1

2n+ 1

(D)
∞∑
n=1

(−1)n
x2n+1

n

(E)

∞∑
n=1

x2n

n

3. Suppose ln(1 + x) is expanded as a power series
centered at 0. What is the radius of convergence?

(A) 1

(B) 2

(C) 1/2

(D) 3

(E) Infinite

4. Suppose
1

1− x
=

∞∑
n=0

xn for |x| < 1. Which series

represents
1

1− 2x
?

(A)
∞∑
n=0

(x
2

)n

(B)

∞∑
n=0

2nxn

(C)
∞∑
n=0

2xn

(D)
∞∑
n=0

2nxn

(E)

∞∑
n=1

2nxn

5. What is the power series representation of∫ x
0

t

1 + t2
dt?

(A)
∞∑
n=0

(−1)nx2n+2

2n+ 2

(B)
∞∑
n=0

(−1)n
x2n+1

2n+ 1

(C)

∞∑
n=0

x2n+2

2n+ 2

(D)
∞∑
n=0

(−1)nx2n

(E)
∞∑
n=1

(−1)n−1x2n

n

6. If
1

1− x
has radius of convergence 1, what is the

radius of convergence for
1

1− 5x
?

(A) 5

(B) 1/5

(C) 2

(D) 1/2

(E) 1
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11.10 Taylor Series

Taylor Series at x = a:

f(x) =

∞∑
n=0

cn (x−a)n, cn =
f (n)(a)

n!
, |x−a| < R.

Maclaurin Series (special case a = 0):

f(x) =
∞∑
n=0

f (n)(0)

n!
xn, |x| < R.

Finding a Series

1. Compute f (n)(a) for n = 0, 1, 2, . . . .

2. Form coefficients cn = f (n)(a)/n!.

3. Write
∑∞

n=0 cn (x− a)n.

4. Determine radius R via Ratio Test:

R = lim
n→∞

∣∣∣ cn
cn+1

∣∣∣.

Common Maclaurin Series

ex =

∞∑
n=0

xn

n!
, R = ∞,

sinx =
∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
, R = ∞,

cosx =

∞∑
n=0

(−1)n
x2n

(2n)!
, R = ∞,

1

1− x
=

∞∑
n=0

xn, R = 1,

ln(1 + x) =
∞∑
n=1

(−1)n−1x
n

n
, R = 1,

arctanx =

∞∑
n=0

(−1)n
x2n+1

2n+ 1
, R = 1.

Question Type Description

1. Construct Taylor or Maclaurin Series Build a Taylor or Maclaurin series using given
derivative values or a general pattern.

2. Build Series from Known Maclaurin Series Start from a known Maclaurin series and modify
it by substitution or multiplication to find a new
series.

3. Find Specific Coefficients Find the coefficient of a specific term xn in a given
power series.

4. Integrate Power Series Integrate a known power series term-by-term to find
a new series.

5. Find the Sum of a Series Recognize the sum of a given series as a known el-
ementary function.

6. Center Shifts and Pattern Adjustments Adjust a Maclaurin series to a Taylor series centered
at a ̸= 0 and find new intervals of convergence.

7. Manipulate Series by Differentiation or Multipli-
cation

Differentiate or multiply a power series term-by-
term to produce a related series.

8. Find Specific Derivatives from Series Find values like f (n)(a) by using the structure of
the Taylor series.
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Free Response Practice

1. Suppose f satisfies f (n)(0) = (−1)nn! for all n ≥ 0. Find the Maclaurin series for f(x).

2. Starting from the Maclaurin series for 1
1−x , find a power series for 1

1−4x and state its radius of convergence.

3. Use the Maclaurin series for ln(1 + x) to find a power series for ln(1− 3x).

4. Find the coefficient of x5 in the Maclaurin series for e3x.

5. Find the coefficient of x10 in the power series representation of arctan(x2).

6. Evaluate

∫
1

1 + x2
dx as a power series.

7. Use a power series to evaluate

∫
e−x2

dx (leave as an infinite series).

8. Find a power series representation for

∫
sin(x2) dx.

9. Evaluate the series
∞∑
n=0

4n

n!
.

10. Evaluate the series
∞∑
n=0

(−1)n

(2n+ 1)!
.

11. Evaluate the series
∞∑
n=1

(−1)n−1

2n− 1
.

12. Find the Taylor series for f(x) = 1
1−(x−2) centered at a = 2.

13. Find the Taylor series for f(x) = ln(1 + (x− 3)) centered at a = 3.

14. Find a power series representation for xex by manipulating the Maclaurin series for ex.

15. Suppose f(x) has a Maclaurin series
∑∞

n=0
xn

3n . Find f (55)(0).

16. Suppose the coefficient of (x− 2)7 in the Taylor series for f(x) centered at a = 2 is 1
56 . Find f (7)(2).
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Multiple Choice Practice

1. Which of the following correctly describes the be-
ginning of the Maclaurin series for a function f(x)
with f(0) = 1, f ′(0) = 0, f ′′(0) = 2, f (3)(0) = 0,
f (4)(0) = 4 ?

(A) f(x) = 1 + x+ x2 + x3 + · · ·

(B) f(x) = 1 + x2 +
x4

2
+ · · ·

(C) f(x) = 1 + x2 +
x3

6
+ · · ·

(D) f(x) = 1 + x2 +
x4

6
+ · · ·

(E) f(x) = 1 +
x2

2
+

x4

24
+ · · ·

2. The radius of convergence for
∑∞

n=0
(3x)n

n! is:

(A) 1

(B) 3

(C) Infinite

(D) 1
3

(E) 0

3. Which of the following series has radius of conver-
gence 1

2?

(A)
∑

xn

(B)
∑

(2x)n

(C)
∑

(x/2)n

(D)
∑

(−x)n

(E)
∑

(3x)n

4. Which of the following represents

∫
1

1 + x2
dx as

a power series?

(A)

∞∑
n=0

x2n+1 + C

(B)

∞∑
n=0

x2n

2n
+ C

(C)

∞∑
n=0

(−1)nx2n + C

(D)

∞∑
n=0

(−1)nx2n+1 + C

(E)

∞∑
n=0

(−1)n
x2n+1

2n+ 1
+ C

5. Find the sum of the series:

∞∑
n=0

(2x)n

n!

(A) e2x

(B) ex
2

(C) 1
1−2x

(D) sin(2x)

(E) cos(2x)

6. Suppose
∑∞

n=0 cn(x−3)n converges when |x−3| <
2. Which interval describes where the series con-
verges?

(A) (−2, 2)

(B) (1, 5)

(C) (3, 5)

(D) (1, 3)

(E) (2, 4)

7. Suppose the Maclaurin series for f(x) is:

f(x) =

∞∑
n=0

xn

n!

What is f (4)(0)?

(A) 1

(B) 4

(C) 6

(D) 24

(E) 0

8. Which of the following series represents cos(x)?

(A)
∑∞

n=0(−1)n
x2n

(2n)!

(B)
∑∞

n=0(−1)n
x2n+1

(2n+ 1)!

(C)
∑∞

n=0

xn

n!

(D)
∑∞

n=0

(−1)nxn

n

(E)
∑∞

n=0 x
2n
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11.11 Taylor Remainder Estimate

Theorem (Taylor’s Inequality). If
∣∣f (n+1)(x)

∣∣ ≤ M for all |x− a| ≤ d, then

∣∣Rn(x)
∣∣ < M

(n+ 1)!

∣∣x− a
∣∣n+1

.

Use this to choose n so that the error is below a desired tolerance.

• To prove f equals its Taylor series, show limn→∞Rn(x) = 0 via either Taylor’s Inequality or the
alternative remainder forms.

• For alternating-series remainders, the first omitted term often bounds
∣∣Rn(x)

∣∣.
• Always check the interval |x− a| < R, where R is the radius of convergence of the series.

Question Type Description

1. Find n for Target Error Determine how large n must be so that the remain-
der |Rn(x)| is below a specified bound.

2. Find Taylor Polynomial Tn(x) Construct the Taylor polynomial of given degree n
centered at a given point a.

3. Bound |Rn(x)| Over an Interval Use Taylor’s Inequality to bound the error |Rn(x)|
over a specified interval.

4. Alternating Series Estimation Apply the Alternating Series Estimation Theorem
to bound the error for alternating series.

5. Find Interval for Specified Accuracy Determine the set of x-values where the Taylor poly-
nomial approximates the function within a given er-
ror.

6. Determine When Taylor Series Matches Function Recognize when the Taylor series converges to f(x)
and when it does not.

7. Graphical Confirmation of Error Bound Use a graph to confirm that the actual error is
within the theoretical bound.

8. Find Number of Terms Needed for Precision Find how many terms (starting from n = 0) are
needed for a Taylor series approximation to achieve
a specified precision.
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Free Response Practice

1. Find the minimum degree n necessary so that the Maclaurin polynomial for sin(x) approximates sin(0.2)
with an error less than 10−6.

2. Find the minimum degree n necessary so that the Taylor polynomial for ex centered at a = 0 approximates
e0.5 within an error less than 0.0001.

3. Find the Taylor polynomial of degree 3 centered at a = 0 for f(x) = cos(x).

4. Find an upper bound for the error |R2(x)| when approximating ex on the interval 0 ≤ x ≤ 0.5 using the
degree 2 Taylor polynomial centered at a = 0.

5. Find an upper bound for |R3(x)| when approximating sin(x) on −0.2 ≤ x ≤ 0.2 with a Taylor polynomial
centered at a = 0.

6. Use the Alternating Series Estimation Theorem to estimate the error when approximating arctan(0.5) by
the sum of the first two nonzero terms of its Maclaurin series.

7. Determine for which values of x the degree 2 Taylor polynomial for ln(1 + x) approximates ln(1 + x) within
0.0005 error.
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Multiple Choice Practice

1. What is the smallest degree n needed so that
the Maclaurin polynomial for ex approximates e0.2

within error less than 0.001?

(A) n = 2

(B) n = 3

(C) n = 4

(D) n = 5

(E) n = 6

2. Find the Taylor polynomial of degree 2 centered
at a = 0 for cos(x).

(A) 1− x+ x2

2

(B) 1− x2

2

(C) 1 + x2

(D) 1− x2

3

(E) 1− x2

3. Which expression best estimates the maximum er-
ror when approximating ex by its degree 2 Taylor
polynomial centered at a = 0 for x = 0.1?

(A)
e0.10.12

2!

(B)
e0.10.12

3!

(C)
e0.10.13

3!

(D)
e0.10.14

4!

(E)
e0.10.13

2!

4. Which expression estimates the maximum error
when approximating sin(x) with a degree 3 Taylor
polynomial centered at 0 on −0.1 ≤ x ≤ 0.1?

(A)
(0.1)2

2!

(B)
(0.1)3

3!

(C)
(0.1)4

4!

(D)
(0.1)5

5!

(E)
(0.1)6

6!

5. Using the Alternating Series Estimation Theorem,
which bound best estimates the error for approx-
imating arctan(0.5) with the first three nonzero
terms?

(A) Less than (0.5)3

(B) Less than
(0.5)4

4

(C) Less than
(0.5)5

5

(D) Less than
(0.5)6

6

(E) Less than
(0.5)7

7

6. Which value provides an upper bound for the error
when approximating ln(1+x) at x = 0.2 using the
first two nonzero terms?

(A) (0.2)2

(B) (0.2)3

(C)
(0.2)2

2

(D)
(0.2)3

3

(E)
(0.2)2

3

7. Find the largest interval of those listed below
where the degree 2 Taylor polynomial for ex cen-
tered at 0 approximates ex within an error less
than 0.001?

(A) |x| < 0.05

(B) |x| < 0.1

(C) |x| < 0.5

(D) |x| < 1

(E) |x| < 2

8. Find the largest interval of those listed below
where the degree 3 Taylor polynomial for sin(x)
approximates sin(x) within 10−4 error.

(A) |x| < 0.1

(B) |x| < 0.5

(C) |x| < 1

(D) |x| < 2

(E) |x| < 3
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9.1 Differential Equations

Definition. A differential equation is an equation involving an unknown function and one or more of its
derivatives.

• Order: The highest derivative present.

• General Solution: The full family of solutions.

• Particular Solution: A specific solution satisfying an initial condition.

• Initial-Value Problem (IVP): A differential equation plus an initial condition like y(t0) = y0.

Remark. To verify that y = f(x) is a solution of a differential equation:

1. Differentiate f(x) as needed.

2. Substitute into the differential equation.

3. Simplify to check if both sides are equal.

Question Type Description

1. Verify a Given Function is a Solution Substitute y, y′, or y′′ into the differential equation
and check if the function satisfies it.

2. Determine Which Functions are Solutions (Select
All That Apply)

Analyze multiple given functions and determine
which ones solve the differential equation.

3. Solve a Differential Equation for a General Fam-
ily of Solutions

Integrate directly to find the general solution, in-
cluding a constant C.

4. Solve for a Particular Solution Given an Initial
Condition

Solve a differential equation and use an initial con-
dition to find the specific value of C.

5. Analyze Graphs to Determine If a Graph Could
Represent a Solution

Use properties like slope, monotonicity, and con-
cavity implied by y′ or y′′ to assess whether a graph
could be a solution.
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Free Response Practice

1. Verify that y = e3x is a solution to the differential equation:

y′ = 3y

2. Verify that y = sin(2x) is a solution to the differential equation:

y′′ + 4y = 0

3. Verify that y = x2 + 1 satisfies the differential equation:

y′ = 2x

4. Solve the differential equation y′ = 2x given that y(1) = 5.

5. Find the particular solution to dy
dx = 3ex satisfying y(0) = 2.

6. Solve dy
dx = sin(x) with the initial condition y

(
π
2

)
= 0.
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Multiple Choice Practice

1. Verify whether y = e2x is a solution to y′ = 2y.

(A) Yes, it satisfies the differential equation.

(B) No, it does not satisfy the differential equa-
tion.

2. Is y = x2+1 a solution to the differential equation
y′ = 2x?

(A) Yes

(B) No

3. Which of the following functions satisfy y′ = 3y?
(Select all that apply.)

(a) y = e3x

(b) y = 2e3x

(c) y = e−3x

(d) y = 3ex

4. Which of the following satisfy y′′ + y = 0? (Select
all that apply).

(a) y = sin(x)

(b) y = cos(x)

(c) y = ex

(d) y = sin(x) + cos(x)

5. Solve the differential equation y′ = 6x.

(A) y = 6x+ C

(B) y = 3x+ C

(C) y = 12x+ C

(D) y = 3x2 + C

(E) y = 6x2 + C

6. Solve the differential equation
dy

dx
= cos(x).

(A) y = cos(x) + C

(B) y = sin(x) + C

(C) y = − sin(x) + C

(D) y = − cos(x) + C

(E) y = x cos(x) + C

7. Solve the differential equation y′ = 2x given that
y(1) = 6.

(A) y = x2 + 2

(B) y = x2 + 3

(C) y = x2 + 4

(D) y = x2 + 5

(E) y = 2x2 + 5

8. Find the particular solution to
dy

dx
= ex satisfying

y(0) = 3.

(A) y = ex + 3

(B) y = ex + 2

(C) y = ex + 1

(D) y = ex − 3

(E) y = 3ex

9. True or False: If y′ = 2y, then any solution graph
must be increasing wherever y > 0.

10. True or False: If y′ = −y, then the solution curves
are always decreasing when y > 0.
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9.3 Separable Differential Equations

Definition. A differential equation is separable if it can be written in the form

dy

dx
= g(x)h(y)

This allows separation of variables:
1

h(y)
dy = g(x) dx

Steps for Solving a Separable Differential Equation

1. Rewrite in the form dy
dx = g(x)h(y).

2. Separate variables: 1
h(y) dy = g(x) dx.

3. Integrate both sides.

4. Solve explicitly for y, if possible.

5. Apply any initial condition to determine the constant C.

Remark. If the integral involves
∫

1
y dy, the solution includes a logarithm:∫

1

y
dy = ln |y|+ C

Be careful with absolute values when solving for y.

Question Type Description

1. Identify Whether an Equation Is Separable Determine whether a differential equation can be
separated into the form h(y) dy = g(x) dx.

2. Solve Separable Differential Equations (General
Solutions)

Solve a separable differential equation by separating
variables and finding the general solution (including
a constant C).

3. Solve Separable Differential Equations (Particu-
lar Solutions)

Solve a separable differential equation using an ini-
tial condition to determine the specific value of C.

4. Solve Separable Differential Equations (Implicit
Solutions)

Solve a separable differential equation where the so-
lution may remain implicit if solving explicitly for
y is difficult or unnecessary.
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Free Response Practice

1. Solve the differential equation y′ = xy by finding the general solution.

2. Solve the differential equation y′ =
2y

x
by finding the general solution.

3. Solve the differential equation y′ = x(1 + y2) by finding the general solution.

4. Solve the differential equation: y′ = y2 with the initial condition y(0) = 1.

5. Solve the differential equation: y′ = (1− x2)y with y(0) = 2.

6. Solve the differential equation: y′ = x2(1 + y) given that y(1) = 0.

7. Solve the differential equation: y′ =
y

x
and leave your answer in implicit form if necessary.

8. Solve the differential equation: y′ =
x

y
and leave your answer in implicit form if necessary.

9. Solve the differential equation: y′ =
2y

x+ 1
and leave your answer in implicit form if necessary.
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Multiple Choice Practice

1. Which of the following differential equations is sep-
arable?

(A)
dy

dx
= x2 + y2

(B)
dy

dx
= ex + y

(C)
dy

dx
= xy

(D)
dy

dx
= tan(x+ y)

(E)
dy

dx
= ln(x+ y)

2. Which of the following is NOT separable?

(A)
dy

dx
=

x

1 + y2

(B)
dy

dx
= x(1 + y2)

(C)
dy

dx
= x+ y

(D)
dy

dx
=

y

x

(E)
dy

dx
=

y2

x

3. Solve for the general solution to
dy

dx
= x2y.

(A) y = Cex
2

(B) y = Cx2

(C) y = Cex
3/3

(D) y = Cxex

(E) y = Cx3 + 1

4. Solve for the general solution to
dy

dx
=

3y

x
.

(A) y = Cx3

(B) y = Cx

(C) y = Cx2

(D) y = Ce3x

(E) y = Cx−3

5. Find the particular solution to
dy

dx
= y2 with initial

condition y(0) = 2.

(A) y =
1

2− x

(B) y =
1

x+ 2

(C) y = 2 + x

(D) y = 2− x

(E) y =
1

x− 2

6. Find the particular solution to
dy

dx
= (1−x2)y with

y(0) = 3.

(A) y = 3e−x+x3/3

(B) y = 3ex−x3/3

(C) y = 3ex
2/2

(D) y = 3ex−x2

(E) y = 3ex
3−x

7. Solve the separable differential equation
dy

dx
=

2y

x
.

(A) y = Cx

(B) y = Cx2

(C) y = Cx3

(D) y = Cx4

(E) y = C ln(x)

8. Solve the separable differential equation
dy

dx
=

x2

y
.

(A) y2 =
2x3

3
+ C

(B) y = Cx2

(C) y =
x3

3

(D) y2 = x2 + C

(E) y = ex
2
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Solutions

11.8 Power Series (Solutions)

Free Response Practice

1.

∞∑
n=1

(2x− 5)n

n · 3n

Apply the Ratio Test:

L = lim
n→∞

∣∣∣∣ (2x− 5)n+1

(n+ 1)3n+1
· n · 3n

(2x− 5)n

∣∣∣∣
=

∣∣∣∣2x− 5

3

∣∣∣∣
So the radius is R = 3

2 , and the center is x = 5
2 .

Solving |2x− 5| < 3 gives the open interval (1, 4).

At x = 1, we get
∑ (−1)n

n — converges. At x = 4,
we get

∑ 1
n — diverges.

R =
3

2
, I = [1, 4)

2.

∞∑
n=1

n2(x+ 4)n

7n

Apply the Ratio Test:

L = lim
n→∞

∣∣∣∣(n+ 1)2

n2
· x+ 4

7

∣∣∣∣
=

∣∣∣∣x+ 4

7

∣∣∣∣
So R = 7, centered at x = −4, giving interval
(−11, 3). At both endpoints, the series converges
by alternating series or comparison.

R = 7, I = [−11, 3]

3.
∞∑
n=0

(x− 1)n

n!

This is the Maclaurin series for ex−1, which con-
verges for all real x.

R = ∞, I = (−∞,∞)

4.

∞∑
n=1

(x+ 2)2n

5n

This is geometric with ratio r = (x+2)2

5 . Require
|r| < 1 ⇒ (x+ 2)2 < 5, so:

−
√
5 < x+ 2 <

√
5

−2−
√
5 < x < −2 +

√
5

R =
√
5, I = (−2−

√
5,−2 +

√
5)

5.

∞∑
n=1

(−1)n(3x)n

n2

Apply the Ratio Test:

L = lim
n→∞

∣∣∣∣ (3x)n+1

(n+ 1)2
· n2

(3x)n

∣∣∣∣
= 3|x|

So R = 1
3 , centered at x = 0. At x = ±1

3 , alter-
nating series converge.

R =
1

3
, I =

[
−1

3 ,
1
3

]

6.
∞∑
n=1

xn

(n+ 2)!

Apply the Ratio Test:

L = lim
n→∞

∣∣∣∣ xn+1

(n+ 3)!
· (n+ 2)!

xn

∣∣∣∣
= lim

n→∞

∣∣∣∣ x

n+ 3

∣∣∣∣ = 0

So the series converges for all x.

R = ∞, I = (−∞,∞)
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7.

∞∑
n=2

(x− 7)n

n ln(n)

Apply the Ratio Test:

L = lim
n→∞

∣∣∣∣ (x− 7)n+1

(n+ 1) ln(n+ 1)
· n ln(n)

(x− 7)n

∣∣∣∣
= |x− 7|

So R = 1, centered at x = 7. Endpoints converge
by comparison and alternating series tests.

R = 1, I = [6, 8]

8.
∞∑
n=0

n! (x+ 1)n

nn

Let

an =
n! (x+ 1)n

nn
.

Then∣∣∣∣an+1

an

∣∣∣∣ = |x+ 1| (n+ 1)nn

(n+ 1)n+1
= |x+ 1|

(
n

n+1

)n
,

and limn→∞(n/(n+ 1))n = 1/e. Hence

L =
|x+ 1|

e
< 1 =⇒ R = e, center x = −1.

Check the endpoint x = −1 + e. Then x + 1 = e
and

an =
n! en

nn
.

Since for all n ≥ 1,

an+1

an
= e

(
n

n+1

)n
> e · 1

e
= 1,

the sequence {an} is strictly increasing and a1 =
e > 0. Thus limn→∞ an ≥ e ̸= 0, so the series
diverges by the Divergence Test.

Check the endpoint x = −1− e. Now x+ 1 = −e
and |an+1/an| > 1 still, so lim |an| ̸= 0, and the
series again diverges.

R = e, I = (−1− e, −1 + e).

9.

∞∑
n=1

(2x− 3)2n

n · 4n

Let

an =
(2x− 3)2n

n 4n
.

Then∣∣∣∣an+1

an

∣∣∣∣ = |2x− 3|2 (n/(n+ 1))

4
−−−→
n→∞

(2x− 3)2

4
.

Convergence requires

(2x− 3)2

4
< 1 =⇒ |2x−3| < 2 =⇒ 1

2 < x < 5
2 .

Hence the radius about the center x = 3
2 is

R = 1, I =
(
1
2 ,

5
2

)
.

At x = 5
2 , 2x− 3 = 2, so

an =
22n

n 4n
=

4n

n 4n
=

1

n
,

and
∑∞

n=1
1
n diverges.

At x = 1
2 , 2x− 3 = −2, so

an =
(−2)2n

n 4n
=

4n

n 4n
=

1

n
,

which again diverges.

I =
(
1
2 ,

5
2

)
.

10.

∞∑
n=1

n(x− 5)n

2n(n+ 1)

Let

an =
n (x− 5)n

2n (n+ 1)
.

Then∣∣∣∣an+1

an

∣∣∣∣ = ∣∣∣∣(n+ 1)(x− 5)n+1

2n+1(n+ 2)
· 2n(n+ 1)

n (x− 5)n

∣∣∣∣
=

∣∣∣∣x− 5

2

∣∣∣∣ (n+ 1)2

n(n+ 2)
−−−→
n→∞

∣∣∣∣x− 5

2

∣∣∣∣ .
Convergence requires

∣∣x−5
∣∣/2 < 1, i.e. 3 < x < 7.

Hence

R = 2, centered at x = 5.

At x = 7: an = n·2n
2n(n+1) = n

n+1 → 1 ̸= 0, so the
series diverges.

At x = 3: an = n (−2)n

2n(n+1) = (−1)n n
n+1 , whose terms

do not tend to zero, so the series diverges.

I = (3, 7).
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Multiple Choice Practice

1. (C) x = 0. Since the power series converges at x = 3, its radius satisfies R ≥ 2. Only x = 0 lies in (−1, 3).

2. (B) x = 5. Convergence at x = 6 gives R ≥ |6 − 4| = 2, so the series converges for |x − 4| < 2. At x = 5,
|5− 4| = 1 < 2.

3. (B) Radius = 3. The interval of convergence (−2, 4) has center −2+4
2 = 1 and half-width 3.

4. (D) x = −2. A series centered at 2 with R = 3 converges for |x− 2| < 3. At x = −2, | − 2− 2| = 4 > 3, so
it must diverge.

5. (C) x = −10. Radius 6 about x = −4 covers |x + 4| < 6. At x = −10, | − 10 + 4| = 6 is an endpoint and
must be checked; other listed points lie outside or trivially inside.

6. (E) x = 2. Radius 4 about x = −2 covers |x + 2| < 4. At x = 2, |2 + 2| = 4 is an endpoint—convergence
there is not guaranteed.
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11.9 Representing Functions as Power Series (Solutions)

Free Response Practice

1. f(x) =
x

1− 3x

f(x) = x · 1

1− 3x

= x

∞∑
n=0

(3x)n

=
∞∑
n=0

3n xn+1.

Converges when |3x| < 1, i.e. |x| < 1

3
. R = 1

3 .

2. f(x) =
4

7 + 2x

f(x) =
4

7

1

1 + 2x
7

=
4

7

∞∑
n=0

(−1)n
(
2x
7

)n

=
∞∑
n=0

(−1)n
4 · 2n

7n+1
xn.

Converges when
∣∣2x
7

∣∣ < 1, i.e. |x| < 7
2 . R = 7

2 .

3. f(x) =
1

9− x2

f(x) =
1

9

1

1− x2

9

=
1

9

∞∑
n=0

(
x2

9

)n

=

∞∑
n=0

x2n

9n+1
.

Converges when
∣∣x2

9

∣∣ < 1, i.e. |x| < 3. R = 3.

4. f(x) =
x2

1 + x

f(x) = x2
1

1 + x

= x2
∞∑
n=0

(−1)nxn

=

∞∑
n=0

(−1)n xn+2.

Converges when |x| < 1. R = 1.

5. f(x) =
1

5− x

f(x) =
1

5

1

1− x
5

=
1

5

∞∑
n=0

(
x
5

)n

=

∞∑
n=0

xn

5n+1
.

Converges when
∣∣x
5

∣∣ < 1, i.e. |x| < 5. R = 5.

6. f(x) = ln(1 + x2)

ln(1 + x2) =

∫ x2

0

1

1 + t
dt

=
∞∑
n=1

(−1)n−1 (x
2)n

n

=

∞∑
n=1

(−1)n−1 x
2n

n
.

Converges when |x2| < 1, i.e. |x| < 1. R = 1.

7. f(x) = arctan(2x)

arctan(2x) =

∫ 2x

0

1

1 + u2
du

=

∞∑
n=0

(−1)n
(2x)2n+1

2n+ 1

=
∞∑
n=0

(−1)n
22n+1

2n+ 1
x2n+1.

Converges when |2x| < 1, i.e. |x| < 1
2 . R = 1

2 .

8. f(x) =

∫ x

0

1

1 + t4
dt

1

1 + t4
=

∞∑
n=0

(−1)n t4n, |t| < 1,

∫ x

0

1

1 + t4
dt =

∞∑
n=0

(−1)n
∫ x

0
t4n dt

=

∞∑
n=0

(−1)n
x4n+1

4n+ 1
.

Converges when |x| < 1. R = 1.
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9. f(x) =

∫ x

0

t

1 + t2
dt

t

1 + t2
= t

∞∑
n=0

(−1)nt2n =

∞∑
n=0

(−1)nt2n+1, |t| < 1,

∫ x

0

t

1 + t2
dt =

∞∑
n=0

(−1)n
∫ x

0
t2n+1 dt

=

∞∑
n=0

(−1)n
x2n+2

2n+ 2
.

Converges when |x| < 1. R = 1.
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Multiple Choice Practice

1. (A)
1

1 + x
=

∞∑
n=0

(−1)nxn for |x| < 1.

2. (C) arctanx =

∞∑
n=0

(−1)n
x2n+1

2n+ 1
for |x| < 1.

3. (A) ln(1 + x) =

∞∑
n=1

(−1)n−1x
n

n
has radius 1.

4. (B)
1

1− 2x
=

∞∑
n=0

(2x)n =

∞∑
n=0

2nxn for |2x| < 1.

5. (A) Use the geometric series for 1
1+t2

:

1

1 + t2
=

∞∑
n=0

(−1)n t2n, |t| < 1.

Multiply by t and integrate term-by-term:

t

1 + t2
=

∞∑
n=0

(−1)n t2n+1,

∫ x

0

t

1 + t2
dt =

∞∑
n=0

(−1)n
∫ x

0
t2n+1 dt =

∞∑
n=0

(−1)n
x2n+2

2n+ 2
.

6. (B) If 1
1−x has R = 1, then 1

1−5x has R = 1
5 .
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11.10 Taylor Series (Solutions)

Free Response Practice

1. Suppose f (n)(0) = (−1)n n!. Then

f(x) =

∞∑
n=0

f (n)(0)

n!
xn

=
∞∑
n=0

(−1)n xn

=
1

1 + x

Converges for |x| < 1.

2. Starting from 1
1−x =

∑∞
n=0 x

n, replace x 7→ 4x:

1

1− 4x
=

∞∑
n=0

(4x)n

=
∞∑
n=0

4n xn

Radius R = 1
4 .

3. From ln(1 + u) =
∑∞

n=1(−1)n−1 un

n , set u = −3x:

ln(1− 3x) =
∞∑
n=1

(−1)n−1 (−3x)n

n

= −
∞∑
n=1

3n

n
xn

Valid for |x| < 1
3 .

4. Coefficient of x5 in e3x:

e3x =
∞∑
n=0

(3x)n

n!

Hence [x5] = 35

5! .

5. Coefficient of x10 in arctan(x2):

arctan(x2) =

∞∑
k=0

(−1)k
(x2)2k+1

2k + 1

=

∞∑
k=0

(−1)k
x4k+2

2k + 1

Solve 4k + 2 = 10 =⇒ k = 2, so [x10] = 1
5 .

6.

∫
1

1 + x2
dx as a series:

1

1 + x2
=

∞∑
n=0

(−1)nx2n

∫
1

1 + x2
dx =

∞∑
n=0

(−1)n
x2n+1

2n+ 1
+ C

7.

∫
e−x2

dx as a series:

e−x2
=

∞∑
n=0

(−1)nx2n

n!∫
e−x2

dx =

∞∑
n=0

(−1)n

n!

x2n+1

2n+ 1
+ C

8. Find a power-series for

∫
sin(x2) dx:

sin(x2) =

∞∑
n=0

(−1)n
(x2)2n+1

(2n+ 1)!

=
∞∑
n=0

(−1)n
x4n+2

(2n+ 1)!
,

∫
sin(x2) dx =

∞∑
n=0

(−1)n
x4n+3

(2n+ 1)! (4n+ 3)
+ C.

9. Evaluate the series
∑∞

n=0
4n

n! .

∞∑
n=0

4n

n!
= e4

10. Evaluate the series
∑∞

n=0
(−1)n

(2n+1)! .

∞∑
n=0

(−1)n

(2n+ 1)!
= sin(1)

11. Evaluate the series
∑∞

n=1
(−1)n−1

2n−1 .

∞∑
n=1

(−1)n−1

2n− 1
= arctan(1)

=
π

4

12. Taylor series for f(x) =
1

1− (x− 2)
centered at

a = 2:

1

1− (x− 2)
=

∞∑
n=0

(x− 2)n, |x− 2| < 1.
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13. Taylor series for f(x) = ln
(
1 + (x− 3)

)
at a = 3:

ln
(
1+(x−3)

)
=

∞∑
n=1

(−1)n−1 (x− 3)n

n
, |x−3| < 1.

14. Power-series for xex:

xex = x
∞∑
n=0

xn

n!
=

∞∑
n=0

xn+1

n!

=
∞∑
n=1

xn

(n− 1)!
.

15. If f(x) =
∑∞

n=0
xn

3n , then

f (n)(0)

n!
=

1

3n
,

f (55)(0) =
55!

355
.

16. If the (x− 2)7-coefficient in the Taylor series of f
at a = 2 is 1

56 , then

f (7)(2)

7!
=

1

56
,

f (7)(2) =
7!

56
= 90.

28



Multiple Choice Practice

1. (D). The Maclaurin series is

f(x) =
∞∑
n=0

f (n)(0)

n!
xn.

Given
f(0) = 1, f ′(0) = 0, f ′′(0) = 2, f (3)(0) = 0, f (4)(0) = 4,

the nonzero coefficients are

a0 =
f(0)

0!
= 1,

a2 =
f ′′(0)

2!
=

2

2
= 1,

a4 =
f (4)(0)

4!
=

4

24
=

1

6
.

Thus

f(x) = 1 + x2 +
x4

6
+ · · · ,

2. (C).
∞∑
n=0

(3x)n

n!
= e3x,

which converges for all x.

3. (B). ∑
(2x)n

has radius 1
2 .

4. (E).

1

1 + x2
=

∞∑
n=0

(−1)n x2n, |x| < 1,

∫
1

1 + x2
dx =

∞∑
n=0

(−1)n
∫

x2n dx =
∞∑
n=0

(−1)n
x2n+1

2n+ 1
+ C.

5. (A).
∞∑
n=0

(2x)n

n!
= e2x.

6. (B). Center 3, radius 2 → (1,5).

7. (A).

f(x) =
∞∑
n=0

xn

n!
=⇒ f (4)(0) = 1.

8. (A).

cosx =

∞∑
n=0

(−1)n
x2n

(2n)!
.
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11.11 Taylor Remainder Estimate (Solutions)

Free Response Practice

1. Find the minimum degree n so that the Maclau-
rin polynomial for sinx approximates sin(0.2) with
error < 10−6.

By Taylor’s Inequality,∣∣Rn(0.2)
∣∣ ≤ M

(n+ 1)!
|0.2|n+1,

where M = max|t|≤0.2 |f (n+1)(t)| = 1. Hence

0.2n+1

(n+ 1)!
< 10−6.

Test successive n:

n = 4 :
0.25

5!
=

0.00032

120
≈ 2.67× 10−6 > 10−6

n = 5 :
0.26

6!
=

0.000064

720
≈ 8.89× 10−8 < 10−6.

Therefore the smallest suitable degree is

n = 5.

2. Minimum n so
∣∣e0.5 − Tn(0.5)

∣∣ < 10−4.
Remainder bound:

|Rn| ≤
e0.5 0.5n+1

(n+ 1)!
< 10−4.

Test n+ 1 = 3, 4, 5, 6:

e0.5 0.56

6!
≈ 3.58× 10−5 < 10−4

so n+ 1 = 6 =⇒ n = 5.

3. T3 for cosx at 0:

T3(x) =

3∑
k=0

cos(k)(0)

k!
xk = 1− x2

2
.

4. Error bound for ex, degree 2 on [0, 0.5]:

|R2| ≤
e0.5 (0.5)3

3!
=

e0.5 · 0.125
6

≈ 0.0343.

5. Error bound for sinx, degree 3 on [−0.2, 0.2]:

|R3| ≤
1 · 0.24

24

=
0.0016

24
≈ 6.67× 10−5.

6. Approximate arctan(0.5) by x− x3

3 .
Next term bound:

|R| ≤ |x|5

5
=

0.55

5
= 0.00625.

7. Determine for which x the degree-2 Taylor poly-
nomial

T2(x) = x− x2

2

for ln(1 + x) approximates ln(1 + x) with error
< 0.0005.

Here f ′′′(t) = −2/(1 + t)3, so on |t| ≤ |x| < 1 we
have

|f (3)(t)| ≤ 2

(1− |x|)3
.

By Taylor’s Inequality,

|R2(x)| ≤
M

3!
|x|3 ≤ 2

6 (1− |x|)3
|x|3 = |x|3

3 (1− |x|)3
.

We require

|x|3

3 (1− |x|)3
< 0.0005.

Taking cube roots gives

|x|
1− |x|

<
3
√
0.0015 ≈ 0.1153,

so

|x| < 0.1153 (1− |x|) =⇒ |x| ≤ 0.103.

Thus

|x| < 0.103.
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Multiple Choice Practice

1. (B) Error bound for e0.2 using degree-n Maclau-
rin:

|Rn| ≤
e0.2 (0.2)n+1

(n+ 1)!
< 0.001.

Test n+ 1:

n+ 1 = 3 :
e0.20.23

3!
≈ 0.009 > 0.001

n+ 1 = 4 :
e0.20.24

4!
≈ 0.000081 < 0.001.

Hence the smallest n is 3.

2. (B). Degree-2 Taylor for cosx at 0:

T2(x) = 1− x2

2
.

3. (C). For ex about a = 0, Taylor’s inequality gives

|R2(0.1)| ≤
M

3!
|0.1|3,

where M = max0≤t≤0.1 e
t = e0.1. Thus

|R2(0.1)| ≤
e0.1 (0.1)3

6
≈ (0.1)3

3!
.

4. (C). Error bound for sinx degree-3 on [−0.1, 0.1]:

|R3| ≤
1 · (0.1)4

4!
=

10−4

24
≈ 0.00000417.

5. (E). The Maclaurin series for arctanx is

arctanx =
∞∑
k=0

(−1)k
x2k+1

2k + 1
= x−x3

3
+
x5

5
−x7

7
+· · · .

The first three nonzero terms are x−x3/3+x5/5.
By the Alternating Series Estimation Theorem,
the error in truncating after these three terms is
bounded by the magnitude of the next term:∣∣error∣∣ ≤ ∣∣∣∣(−1)3 (0.5)7

7

∣∣∣∣ = (0.5)7

7
.

6. (D). Remainder for ln(1 + x) at x = 0.2, first two
nonzero terms:

|R2| ≤
|x|3

3
=

0.008

3
≈ 0.0027.

7. (B). We use Taylor’s Inequality for ex about 0
with n = 2:

|R2(x)| ≤
e|x| |x|3

6
.

We test each endpoint:

|x| = 0.05 : |R2| ≤
e0.05 (0.05)3

6

≈ 1.0513× 0.000125

6
≈ 2.19× 10−5 < 0.001,

|x| = 0.1 : |R2| ≤
e0.1 (0.1)3

6

≈ 1.1052× 0.001

6
≈ 1.84× 10−4 < 0.001,

|x| = 0.5 : |R2| ≤
e0.5 (0.5)3

6

≈ 1.6487× 0.125

6
≈ 0.0343 > 0.001.

8. (A). For sinx centered at 0 with degree 3, Taylor’s
Inequality gives

|R3(x)| ≤
|x|4

24
.

Test the candidate intervals:

|x| = 0.1 : |R3| ≤
0.14

24
=

10−4

24
≈ 4.17×10−6 < 0.0001,

|x| = 0.5 : |R3| ≤
0.54

24
=

0.0625

24
≈ 0.0026 > 0.0001.

Therefore the largest listed interval is |x| < 0.1 .
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9.1 Differential Equations (Solutions)

Free Response Practice

1. Verify that y = e3x is a solution to y′ = 3y.

y = e3x

y′ = 3e3x = 3y

2. Verify that y = sin(2x) is a solution to y′′ + 4y = 0.

y = sin(2x)

y′ = 2 cos(2x)

y′′ = −4 sin(2x)

y′′ + 4y = −4 sin(2x) + 4 sin(2x) = 0

3. Verify that y = x2 + 1 satisfies y′ = 2x.

y = x2 + 1

y′ = 2x

4. Solve y′ = 2x given y(1) = 5.

dy

dx
= 2x∫

dy =

∫
2x dx

y = x2 + C

Use y(1) = 5 : 5 = 12 + C ⇒ C = 4

y = x2 + 4

5. Find the particular solution to dy
dx = 3ex with y(0) = 2.

dy

dx
= 3ex∫

dy =

∫
3ex dx

y = 3ex + C

Use y(0) = 2 : 2 = 3e0 + C = 3 + C ⇒ C = −1

y = 3ex − 1

6. Solve dy
dx = sin(x), with y

(
π
2

)
= 0.

dy

dx
= sin(x)∫

dy =

∫
sin(x) dx

y = − cos(x) + C

Use y
(π
2

)
= 0 : 0 = − cos

(π
2

)
+ C ⇒ C = 0

y = − cos(x)
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Multiple Choice Practice

1. Verify whether y = e2x is a solution to y′ = 2y.

y = e2x, y′ = 2e2x

2y = 2e2x = y′

(A) Yes

2. Is y = x2 + 1 a solution to y′ = 2x?

y = x2 + 1, y′ = 2x

(A) Yes

3. Which of the following functions satisfy y′ = 3y?
(Select all that apply). (A) and (B)

4. Which of the following satisfy y′′ + y = 0? (Select
all that apply). (A), (B), and (D)

5. Solve y′ = 6x. ∫
dy =

∫
6x dx

y = 3x2 + C

(D) y = 3x2 + C

6. Solve
dy

dx
= cos(x).

y =

∫
cos(x) dx = sin(x) + C

(B) y = sin(x) + C

7. Solve y′ = 2x, with y(1) = 6. ∫
dy =

∫
2x dx

y = x2 + C

y(1) = 6 ⇒ 1 + C = 6 ⇒ C = 5

y = x2 + 4

(D)

8. Find the particular solution to
dy

dx
= ex, y(0) = 3.

y =

∫
ex dx = ex + C

y(0) = 3 ⇒ 1 + C = 3 ⇒ C = 2

y = ex + 2

(B)

9. True or False: If y′ = 2y, then any solution graph
must be increasing wherever y > 0.
True: If y > 0, then y′ = 2y > 0, so the graph
increases.

10. True or False: If y′ = −y, then solution curves are
always decreasing when y > 0.
True: If y > 0, then y′ = −y < 0, so the graph
decreases.
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9.3 Separable Differential Equations (Solutions)

Free Response Practice

1. Solve y′ = xy

Note: y = 0 is a contant solution. If y ̸= 0, then

dy

dx
= xy

1

y
dy = x dx∫

1

y
dy =

∫
x dx

ln |y| = 1

2
x2 + C

|y| = e
1
2
x2+C = eC · ex2/2

y = ±eC · ex2/2

y = Aex
2/2

where A is any constant, including 0.

2. Solve y′ = 2y
x

Note: y = 0 is a contant solution. If y ̸= 0, then

dy

dx
=

2y

x
1

y
dy =

2

x
dx∫

1

y
dy =

∫
2

x
dx

ln |y| = 2 ln |x|+ C

|y| = eC · |x|2

y = ±eC · x2

y = Ax2

where A is any constant, including 0.

3. Solve y′ = x(1 + y2)

dy

dx
= x(1 + y2)

1

1 + y2
dy = x dx∫

1

1 + y2
dy =

∫
x dx

arctan y =
1

2
x2 + C

y = tan

(
1

2
x2 + C

)

4. Solve y′ = y2, with y(0) = 1

dy

dx
= y2

1

y2
dy = dx∫

y−2 dy =

∫
dx

−1

y
= x+ C ⇒ y =

−1

x+ C

y(0) = 1 ⇒ −1

C
= 1 ⇒ C = −1

y =
−1

x− 1

5. Solve y′ = (1− x2)y, with y(0) = 2

dy

dx
= (1− x2)y

1

y
dy = (1− x2) dx∫

1

y
dy =

∫
(1− x2) dx

ln |y| = x− 1

3
x3 + C

|y| = eC · ex−x3/3

y = ±eC · ex−x3/3 = Aex−x3/3

y(0) = 2 ⇒ A = 2

y = 2ex−x3/3

6. Solve y′ = x2(1 + y), with y(1) = 0

dy

dx
= x2(1 + y)

1

1 + y
dy = x2 dx∫

1

1 + y
dy =

∫
x2 dx

ln |1 + y| = 1

3
x3 + C

|1 + y| = eC · ex3/3

1 + y = ±eC · ex3/3 = Aex
3/3

y = Aex
3/3 − 1

y(1) = 0 ⇒ Ae1/3 = 1 ⇒ A = e−1/3

y = e(x
3−1)/3 − 1
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7. Solve y′ = y
x

dy

dx
=

y

x
1

y
dy =

1

x
dx∫

1

y
dy =

∫
1

x
dx

ln |y| = ln |x|+ C

|y| = eC |x|
y = ±eCx = Ax

y = Ax

8. Solve y′ = x
y

dy

dx
=

x

y

y dy = x dx∫
y dy =

∫
x dx

1

2
y2 =

1

2
x2 + C

y2 = x2 + C

9. Solve y′ = 2y
x+1

dy

dx
=

2y

x+ 1
1

y
dy =

2

x+ 1
dx∫

1

y
dy =

∫
2

x+ 1
dx

ln |y| = 2 ln |x+ 1|+ C

|y| = eC |x+ 1|2

y = ±eC(x+ 1)2 = A(x+ 1)2

y = A(x+ 1)2
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Multiple Choice Practice

1. (C)
dy

dx
= xy

Separable: 1
ydy = x dx

2. (C)
dy

dx
= x+ y

Not separable — cannot write as a product
g(x)h(y)

3. (C) y = Cex
3/3

From dy
dx = x2y ⇒ 1

ydy = x2dx ⇒ ln |y| = 1
3x

3 + C

4. (A) y = Cx3

From dy
dx = 3y

x ⇒ 1
ydy = 3

xdx ⇒ ln |y| = 3 ln |x|+C

5. (A) y =
1

2− x
From dy

dx = y2 ⇒ − 1
y = x + C, use y(0) = 2 ⇒

C = −1
2

6. (B) y = 3ex−x3/3

Separable: 1
ydy = (1− x2)dx ⇒ ln |y| = x− 1

3x
3 +

C, then apply initial condition

7. (B) y = Cx2

From dy
dx = 2y

x ⇒ 1
ydy = 2

xdx ⇒ ln |y| = 2 ln |x|+C

8. (A) y2 =
2x3

3
+ C

From dy
dx = x2

y ⇒ y dy = x2dx ⇒ 1
2y

2 = 2
3x

3 + C
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