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Topics Covered

The final exam assesses a broad range of topics from Calculus II. Each topic below includes a brief description of
the associated concepts and skills.

Integration Techniques

u-substitution: A foundational method for reversing the chain rule and simplifying integrals by changing
variables.

Integration by parts: A technique based on the product rule for differentiation, useful for integrating
products of functions.

Partial fractions: A strategy for decomposing rational functions into simpler fractions that can be inte-
grated individually.

Trigonometric integrals: Involves using trigonometric identities to integrate expressions containing sin,
cos, tan, etc.

Trigonometric substitution: A method for integrating expressions involving square roots by substituting
trigonometric functions.

Applications of Integration

Improper integrals: Integrals with infinite limits or discontinuous integrands, evaluated using limits.

Volume of solids: Methods such as the disk, washer, and shell techniques to compute the volume of solids
of revolution or known cross-section.

Average value of a function: Calculates the mean output of a continuous function over an interval.

Work problems: Models the work done by a force (e.g., in stretching a spring or lifting a rope or liquid)
using integrals.

Center of mass: Uses integrals to determine the average position (centroid) of a system with uniform or
variable density.

Parametric and Polar Equations

Parametric curves: Curves defined by separate equations for z(¢) and y(t), including slope, tangent lines,
and arc length.

Polar curves: Curves defined by r» = f(#); includes plotting, finding tangent lines, arc length, and comput-
ing enclosed area.

Sequences and Series

Understanding sequences and series: Examines convergence through partial sums and visual behavior
of infinite processes.

Telescoping series: A series where terms cancel in a way that makes the sum easy to evaluate.
Convergence tests: Methods to determine whether a series converges or diverges:

— Divergence Test: Uses the limit of the terms to identify divergence.

Geometric Series Test: Applies to series of the form ar™.

— Integral Test: Compares a series to an improper integral.

p-series Test: Tests series of the form > 1/n?.



— Comparison Tests: Compares a given series to a known benchmark.
— Alternating Series Test: Applies to series whose terms alternate in sign and decrease in magnitude.

— Ratio Test: Uses the ratio between successive terms to assess convergence.
e Absolute vs. conditional convergence: Distinguishes series that converge absolutely (when all terms
are made positive) from those that only converge conditionally.
Power Series and Taylor Series

¢ Radius and interval of convergence: Identifies where a power series converges using the Ratio Test.

e Creating new power series: Uses algebraic manipulation and substitution to derive new series from
known ones.

e Using known Maclaurin series: Substitutes or transforms standard series (like those for e*, sinz, etc.)
to match new functions.

e Taylor polynomials and series: Represents a function locally as a polynomial or infinite series centered
at a point a.
Series Remainder Estimates

e Alternating Series Remainder Estimate: Gives an upper bound on error when truncating an alternating
series.

e Remainder bound from the Integral Test: Uses improper integrals to bound the remainder of positive
decreasing series.

e Taylor’s Inequality: Provides a bound on the error when approximating a function with a Taylor polyno-
mial.

Differential Equations

e Separable differential equations: Solves differential equations by separating variables and integrating
both sides.

e Initial value problems: Uses given conditions to find particular solutions to differential equations.



11.8 Power Series

Definition. A power series centered at a is an infinite series of the form

Z en(z —a)”
n=0

where ¢, are constants called the coefficients, a is the center, and z is the variable.
converge for some values of x and diverge for others.

The series may

e Radius of Convergence R:

— The power series converges absolutely when |z — a| < R and diverges when |z — a| > R.
— If |x — a|] = R, convergence must be checked separately at each endpoint.

— R can often be found using the Ratio Test:

Cn

R = lim

n—o0

(if the limit exists).

Cn+1
e Interval of Convergence:

— The interval may be a single point, a finite interval, or the entire real line.

— Typically has the form (a — R,a+ R), [a— R,a+ R], (a —r,a+ R}, or [a —r,a + R), depending
on endpoint behavior.

Question Type Description

1. Find Radius and Interval of Convergence

Compute radius R and interval I using the Ratio
Test.

2. Determine Radius from Convergence or Diver-
gence Behavior

Infer R based on where the series converges or di-
verges.

3. Identify Center and Radius from Interval or Se-
ries Form

Find center and radius from interval descriptions or
series structure.

4. Analyze Specific Points Relative to Convergence

Determine whether a given point lies inside, outside,
or on the boundary of convergence.

5. Endpoint and Boundary Behavior

Identify where convergence must be checked sepa-
rately (endpoints) or is not guaranteed.




Free Response Practice

For each series below, find the radius of convergence R and the interval of convergence I.

oo
(22 —5)"
n=1
o0 2
n(z+4)"
2 —
n=1
o0
(z = 1)"
3. =
n=0

T Placantl



Multiple Choice Practice

1. The power series 4. Which of the following would definitely cause a
o power series centered at x = 2 with radius 3 to
Z an(x—1)" diverge?
n=0
converges at x = 3. At which of the following z- (A) Evaluating at z = 4
values must the given power series also converge? (B) Evaluating at = = 1
(A) 2 =14 (C) Evaluating at x =5
(B) z=-2 (D) Evaluating at z = —2
(€) 2=0 :
(E) Evaluating at x = —1
(D) =5
(E) x=-5

) 5. Suppose the radius of convergence of > ay,(z+4)"
2. The power series is 6. Which value must be checked separately to

> bn(z—4)"
n=0

determine convergence?

(A) z=6
converges at x = 6. At which of the following z- (B) z =4
values must the given power series also converge?

B (C) x=-10
(A) z=2
(C) z= (E) 2 =-2
(D) =10
(E) x=1

6. Suppose Y pn(x + 2)" has radius of convergence
4. At which of the following points is convergence

3. Suppose the power series > an(z — 1)™ converges
not guaranteed?

for —2 < z < 4. Which of the following statements

is true? (A) 2 =0
(A) The radius of convergence is 2. B) z=1
(B) The radius of convergence is 3.

(C) The radius of convergence is 4. (C) z=-5
(D) The center is at x = 0. (D) z= -1
(E) The center is at © = —1. (E) x =2



11.9 Representing Functions as Power Series

Geometric Series

1
1+

e Factor constants:

o
> bl x) < b,
n=0

— T

termwise.

1 oo
- :Zaz", lz] <1
n=0
o0
=> (-1, |z <1
n=0

Substitution & Algebraic Manipulation

1
e Replace z — ax: T Za”x", lax| < 1.

—_

S| =
—

\
SG

e Combine series: multiply by z*, add/subtract

Term-by-Term Differentiation / Integration If
flx) = Y2 cn(z — a)” has radius R, then on
(a—R,a+ R)

f(z) = Z nen (z—a) !
n=1

n+1

/f(a:)d:v:C—i—ch(x;i)l.
n=0

Radius of convergence remains R (endpoints may
change).
Logarithm & Arctangent

[e.9]

In(l+z)=> (1"

n=1

"
;;7 |$|< L

integrate ——— = >_(—1)"2" and set C = 0.

1+x
i~ 2n+1
x
tane = Y (~1)" S —, <1,
arctan x n_o( ) 1 ||

integrate ﬁ =Y (=1)"z?" and set C = 0.

Convergence Facts

e Radius R from Ratio Test: R = lim

n—o0

Cp ‘
Cn+1

e Interval is (a — R,a + R); test x = a = R sepa-
rately.

e Within interval, series defines a continuous,
infinitely-differentiable function.

Question Type

Description

1. Geometric Series Substitution

Express a rational function as a geometric series by substitution
and/or factoring.

2. Series from Known Maclaurin
Series

Modify a known Maclaurin series (like In(1+z), arctan(x)) to match
the given function.

3. Integrating a Power Series

Represent an integral involving elementary functions by integrating
a known series term-by-term.




Free Response Practice

L f(x)zl—x?)m
2 f<$):7f2x
1
3 @)= 5oy
2
4 f(x)zla—;i-a:
5. fr) = s

6. f(z) =In(1 + 2?)
7. f(x) = arctan(2z)

.1

9. fz) = fox#dt



Multiple Choice Practice

1. Which of the following is the correct power series

representation for 5 x?
o

(A) Y (1"
n=0
(0.9}

2. What is the power series representation for
arctan(z)?

[e.e]

(A) Z(_l)nx%z—i-l
n=0

B) Z x2n+1
n=0

e . :L,2n+1
©) T;)(_l) 2n + 1
e $2n+1
) S
n=1

® YT

n=1

3. Suppose In(1 + z) is expanded as a power series
centered at 0. What is the radius of convergence?

(A) 1
(B) 2
(©) 1/2
(D) 3

) 1

(E

Infinite

4. Suppose 1

represents 1

5. What is the power series representation

T
In e dt?

0 2n+1
Xz
B —
(B) Z( ) 2n+1
n=0
& z2n+2

n=0
OO n—1x2n
n=1

1 oo
= Z:ﬂ” for |z| < 1. Which series
—x

of

6. If ﬁ has radius of convergence 1, what is the
radius of convergence for T 5x?
(A) 5
(B) 1/5
(C) 2
(D) 1/2
(E) 1



11.10 Taylor Series

Taylor Series at z = a:

n

-y S LRI C)
f(fc)—?;)Cn(ﬂU—a) , Cp = oy 5 ‘ZC-G’<R.
Maclaurin Series (special case a = 0):

> £ (0
f(%‘)zzf !()x”, 7| < R.
n=0

Finding a Series
1. Compute f(”)(a) forn=0,1,2,....
2. Form coefficients ¢, = £ (a)/n!.
3. Write > "7 g ¢n (z — a)™.

4. Determine radius R via Ratio Test:
Cn

R = lim

n—oo

Cn+1

Common Maclaurin Series

X n
x
em:E — R = oo,
n!
n=0

oo x2n+1
. . n _
Slnx—Z(—l) m, .R—OO7
n=0
o J/.271
cosx = Z(—l)" )’ R = oo,
n=0
1 oo
. n _
12— ZZL’ , R=1,
n=0
0 "
n(l+a)=> (-)"'=—, R=1,
n=1 n
oo $2n+1
arctan x T;)( ) 1

Question Type

Description

1. Construct Taylor or Maclaurin Series

Build a Taylor or Maclaurin series using given
derivative values or a general pattern.

2. Build Series from Known Maclaurin Series

Start from a known Maclaurin series and modify
it by substitution or multiplication to find a new
series.

3. Find Specific Coefficients

Find the coefficient of a specific term x™ in a given
power series.

S

. Integrate Power Series

Integrate a known power series term-by-term to find
a new series.

5. Find the Sum of a Series

Recognize the sum of a given series as a known el-
ementary function.

6. Center Shifts and Pattern Adjustments

Adjust a Maclaurin series to a Taylor series centered
at a # 0 and find new intervals of convergence.

7. Manipulate Series by Differentiation or Multipli-
cation

Differentiate or multiply a power series term-by-
term to produce a related series.

8. Find Specific Derivatives from Series

Find values like f("(a) by using the structure of
the Taylor series.




Free Response Practice

1. Suppose f satisfies f("(0) = (—1)"n! for all n > 0. Find the Maclaurin series for f(z).

2. Starting from the Maclaurin series for ﬁ, find a power series for ﬁ and state its radius of convergence.

3. Use the Maclaurin series for In(1 + x) to find a power series for In(1 — 3z).
4. Find the coefficient of ° in the Maclaurin series for e3%.

5. Find the coefficient of 710 in the power series representation of arctan(z?).

1
6. Evaluate / —5 dx as a power series.
1+=x
7. Use a power series to evaluate / e dx (leave as an infinite series).

8. Find a power series representation for / sin(z?) dz.

9. Evaluate the series

n=0

10. Evaluate the series

11. Evaluate the series

12. Find the Taylor series for f(z) =

ﬁ centered at a = 2.

13. Find the Taylor series for f(z) =In(1 + (z — 3)) centered at a = 3.
14. Find a power series representation for xe® by manipulating the Maclaurin series for e®.
15. Suppose f(z) has a Maclaurin series Y 0° ; £7. Find £59)(0).

16. Suppose the coefficient of (z — 2)7 in the Taylor series for f(z) centered at a = 2 is &. Find f(7(2).

10



Multiple Choice Practice

1. Which of the following correctly describes the be-
ginning of the Maclaurin series for a function f(x)
with f(0) = 1, f/(0) = 0, f"(0) = 2, f®(0) =0,

fH0)=47

(A) f@)=1+z+2®+a23+ -

4

(B) f(x):1+x2+”%+---

3

(C) f($)=1+x2+x—+...

6

(D) f(:z):1+x2+1§+~-'
.1‘2 .7}4
(B) fla) =1+ + 5+

2. The radius of convergence for > °

(Bz)"

n!

is:

3. Which of the following series has radius of conver-

(A) 1

(B) 3

(C) Infinite
(D) 3

(E) 0

gence %?

(A) >a”
(B) 22(2x)"
(€) X(z/2)"
D) 2(==)"
(E) >2(32)"

4. Which of the following represents /

a power series?

(A) Z$2n+1 + C

nO:OO x2n
(B) Y T—+cC

2n
n=0

[e.9]

(€) > (- +C

n=0
oo

D) Y (-t 4 C

n=0

1
1+

X

2

dzr as

11

5. Find the sum of the series:

> (2z)"
Z(n')

n=0

(A)
(B)
(©)
(D)
(E)

@

aQ

2z
22
1

1-2zx
in(2x)
os(2x)

D
E

w0

(@)

6. Suppose > 7 cn(x—3)" converges when |z —3| <

2. Which interval describes where the series con-
verges?

(A) (=2,2)
(B) (1,5)
(©) (3,9)
(D) (1,3)
(E) (2,4)

What is f*)(0)?

(A) 1

(B) 4

(C) 6

(D) 24

(E) 0

8. Which of the following series represents cos(z)?

.152”

() o1 o

o N x2n+1

(B) S0~V G 1

© 520D

D) T,



11.11 Taylor Remainder Estimate

Theorem (Taylor’s Inequality). If ‘f(”H)(ac)‘ < M for all |z — a| < d, then

M n
|Rn(2)| < Wi |z —a| ™.

Use this to choose n so that the error is below a desired tolerance.

e To prove f equals its Taylor series, show lim,,_o, R,(z) = 0 via either Taylor’s Inequality or the
alternative remainder forms.

e For alternating-series remainders, the first omitted term often bounds }Rn(x)’

o Always check the interval |z — a| < R, where R is the radius of convergence of the series.

Question Type Description

1. Find n for Target Error Determine how large n must be so that the remain-
der |R,(x)| is below a specified bound.

2. Find Taylor Polynomial T,,(x) Construct the Taylor polynomial of given degree n
centered at a given point a.

3. Bound |R,(x)| Over an Interval Use Taylor’s Inequality to bound the error |R,(z)|
over a specified interval.

4. Alternating Series Estimation Apply the Alternating Series Estimation Theorem
to bound the error for alternating series.

5. Find Interval for Specified Accuracy Determine the set of z-values where the Taylor poly-
nomial approximates the function within a given er-
Tor.

6. Determine When Taylor Series Matches Function | Recognize when the Taylor series converges to f(z)
and when it does not.

7. Graphical Confirmation of Error Bound Use a graph to confirm that the actual error is
within the theoretical bound.

8. Find Number of Terms Needed for Precision Find how many terms (starting from n = 0) are
needed for a Taylor series approximation to achieve
a specified precision.

12



Free Response Practice

1.

Find the minimum degree n necessary so that the Maclaurin polynomial for sin(x) approximates sin(0.2)
with an error less than 1076,

. Find the minimum degree n necessary so that the Taylor polynomial for e* centered at a = 0 approximates

€95 within an error less than 0.0001.

. Find the Taylor polynomial of degree 3 centered at a = 0 for f(z) = cos(x).

. Find an upper bound for the error |Rg(x)| when approximating e® on the interval 0 < x < 0.5 using the

degree 2 Taylor polynomial centered at a = 0.

. Find an upper bound for |R3(x)| when approximating sin(z) on —0.2 < x < 0.2 with a Taylor polynomial

centered at a = 0.

. Use the Alternating Series Estimation Theorem to estimate the error when approximating arctan(0.5) by

the sum of the first two nonzero terms of its Maclaurin series.

. Determine for which values of z the degree 2 Taylor polynomial for In(1 + z) approximates In(1 4 z) within

0.0005 error.

13



Multiple Choice Practice

1. What is the smallest degree n needed so that
the Maclaurin polynomial for e* approximates €%
within error less than 0.0017

(A) n=2
(B) n=3
(C) n=4
(D) n=5
(E) n=6

. Find the Taylor polynomial of degree 2 centered
at a = 0 for cos(x).

(A) 1—z4+2
B) 1-%
(C) 1+ 22
(D) 1-%
(E) 1—a?

3. Which expression best estimates the maximum er-

ror when approximating e* by its degree 2 Taylor
polynomial centered at a = 0 for z = 0.17

60'10.12
2!
60'10.12
3!
e%10.13
3!
e0-10.14
4!
e%10.13
2!

(A)
(B)
(©)

(D)

(E)

4. Which expression estimates the maximum error

when approximating sin(z) with a degree 3 Taylor
polynomial centered at 0 on —0.1 < x < 0.17

14

5. Using the Alternating Series Estimation Theorem,

which bound best estimates the error for approx-
imating arctan(0.5) with the first three nonzero
terms?

(A) Less than (0.5)3

4
(B) Less than 05)

5
(C) Less than (055)

6
(D) Less than (065)

7
(E) Less than 05)"

. Which value provides an upper bound for the error

when approximating In(1+z) at x = 0.2 using the
first two nonzero terms?

0.2)2
0.2)3

)2
0.

)
3
() 2

0.
2

—~
[N}

—~
)
w

[\

—~

. Find the largest interval of those listed below

where the degree 2 Taylor polynomial for e* cen-
tered at 0 approximates e* within an error less

than 0.0017

(A) |z| < 0.05
(B) |z| < 0.1
(C) |z] < 0.5
(D) [z <1
(E) |z| < 2

. Find the largest interval of those listed below

where the degree 3 Taylor polynomial for sin(z)
approximates sin(z) within 10~% error.

(A) |z| <0.1
(B) |z| < 0.5
(€) |zl <1
(D) |zf <2
(E) |z| <3



9.1 Differential Equations

Definition. A differential equation is an equation involving an unknown function and one or more of its

derivatives.

e Order: The highest derivative present.

e General Solution: The full family of solutions.

e Particular Solution: A specific solution satisfying an initial condition.

e Initial-Value Problem (IVP): A differential equation plus an initial condition like y(to) = yo.

Remark. To verify that y = f(x) is a solution of a differential equation:

1. Differentiate f(x) as needed.
2. Substitute into the differential equation.

3. Simplify to check if both sides are equal.

Question Type

Description

1. Verify a Given Function is a Solution

Substitute y, ¥/, or 3" into the differential equation
and check if the function satisfies it.

2. Determine Which Functions are Solutions (Select
All That Apply)

Analyze multiple given functions and determine
which ones solve the differential equation.

3. Solve a Differential Equation for a General Fam-
ily of Solutions

Integrate directly to find the general solution, in-
cluding a constant C'.

4. Solve for a Particular Solution Given an Initial
Condition

Solve a differential equation and use an initial con-
dition to find the specific value of C.

5. Analyze Graphs to Determine If a Graph Could
Represent a Solution

Use properties like slope, monotonicity, and con-
cavity implied by 1’ or " to assess whether a graph
could be a solution.

15




Free Response Practice
1. Verify that y = €37 is a solution to the differential equation:
y =3y
2. Verify that y = sin(2z) is a solution to the differential equation:
' +4y=0
3. Verify that y = 2% + 1 satisfies the differential equation:
/

y =2

4. Solve the differential equation 3’ = 2x given that y(1) = 5.

5. Find the particular solution to % = 3e” satisfying y(0) = 2.

6. Solve g—g = sin(z) with the initial condition y (3) = 0.

16



Multiple Choice Practice

1. Verify whether y = €% is a solution to 3 = 2.

(A) Yes, it satisfies the differential equation.

(B) No, it does not satisfy the differential equa-
tion.

2. Is y = 241 a solution to the differential equation
y = 2x7
(A) Yes
(B) No

3. Which of the following functions satisfy 3’ = 3y?
(Select all that apply.)

(a) y=e*
(b) y = 2e™
(c) y=e>
(d) y=3e”

4. Which of the following satisfy y” +y = 0?7 (Select
all that apply).

(a) y =sin(z

(b) y = cos(x

(c) y=e®

(d) y = sin(x) + cos(x)

(A) y=6z+C
(B) y=3xz+C
(C)y=12z+C
(D) y =322+ C
(E) y =622+ C

17

6.

10.

d
Solve the differential equation d—y = cos(z).
x

(A) y=a®+2

(B) y=2?+3

(C) y=2"+4

(D) y=22+5

(E) y=22>+5

Find the particular solution to ;Ly = e” satisfying
y(0) = ‘
(A) y=¢€¢"4+3

(B) y=e"+2

(C)y=e€e"4+1

(D) y=e"—3

(E) y = 3e”

. True or False: If ¢/ = 2y, then any solution graph

must be increasing wherever y > 0.

True or False: If y/ = —y, then the solution curves
are always decreasing when y > 0.



9.3 Separable Differential Equations

Definition. A differential equation is separable if it can be written in the form

dy _
dv

This allows separation of variables:

9(x)h(y)

1
) dy = g(z) dx

Steps for Solving a Separable Differential Equation

dy _

1. Rewrite in the form =9

(2)h(y).

2. Separate variables: ﬁ dy = g(x) dx.

3. Integrate both sides.
4. Solve explicitly for y, if possible.

5.

Apply any initial condition to determine the constant C.

Remark. If the integral involves [ % dy, the solution includes a logarithm:

1
/ydyzln|y|—|—0

Be careful with absolute values when solving for y.

Question Type

Description

1. Identify Whether an Equation Is Separable

Determine whether a differential equation can be
separated into the form h(y)dy = g(x) dx.

2. Solve Separable Differential Equations (General
Solutions)

Solve a separable differential equation by separating
variables and finding the general solution (including
a constant C').

3. Solve Separable Differential Equations (Particu-
lar Solutions)

Solve a separable differential equation using an ini-
tial condition to determine the specific value of C.

4. Solve Separable Differential Equations (Implicit
Solutions)

Solve a separable differential equation where the so-
lution may remain implicit if solving explicitly for
y is difficult or unnecessary.

18




Free Response Practice

1. Solve the differential equation ¢’ = xy by finding the general solution.
2

2. Solve the differential equation 3’ = il by finding the general solution.
x

3. Solve the differential equation 3 = x(1 + yz) by finding the general solution.
4. Solve the differential equation: ' = y* with the initial condition y(0) = 1.
5. Solve the differential equation: 3’ = (1 — z2)y with y(0) = 2.

6. Solve the differential equation: 3’ = 2%(1 + y) given that y(1) = 0.

7. Solve the differential equation: y' = Y and leave your answer in implicit form if necessary.
x

x
8. Solve the differential equation: 3" = — and leave your answer in implicit form if necessary.
Yy

2
9. Solve the differential equation: y' = _'Z_J
x

and leave your answer in implicit form if necessary.

19



Multiple Choice Practice

1. Which of the following differential equations is sep-

arable?
dy

A) =2 = 2 2

( )dw ety
dy

B) -2 = ¢*

( )dx e’ +y
dy

C —_— =

()dx zy
dy
dy

2. Which of the following is NOT separable?

dy =
dr 1+ y>?

B) 2L =a(1+47)

2

d
3. Solve for the general solution to d—y = zy.
x

(A) y=Ce®

(B) y =Cu?

(C) y=Ce’/3

(D) y = Cxe®

(E) y=0Cz3+1
4. Solve for the general solution to ;li = 3%

(A) y=C2®

(B) y=Cx

(C) y=Ca®

(D) y = Ce*

(E) y=Ca™3

20

d
. Find the particular solution to cTy =
x

d
5. Find the particular solution to d—y = y? with initial
T

condition y(0) = 2.

1
(A) y=5—
1
(B) y::v—|—2
C)y=2+=x
D)y=2-x
1
E)y=—3

(1—22)y with

y(0) =3.
(A) y = 3em=+a"/3
(B) y = 3er /3
(C) y = 3e"/?
(D) y = 3ev’
(B) y=3e"—"
7. Solve the separable differential equation —= = 2y‘
x
(A) y=Cz
(B) y=Cx?
(C) y=Cz®
(D) y = Ca*
(E) y = Cln(x)
2
8. Solve the separable differential equation — = :Z/ .

2:1:
(B) y = Ca?

3

x

Q) y=
(C) y=3
(D) 4?2 =22+ C
(B) y=e"



Solutions

11.8 Power Series (Solutions)

Free Response Practice

2.%’ — 5 o0 (.%' + 2)2n
n=1
Apply the Ratio Test: This is geometric with ratio r = @ Require
(2(13—5)n+1 n- 3" |’I“|<1:>(SU+2)2<5, S0:
L = lim T —
2rx — 5
So the radius is R = , and the center is x = % R=+v5 I=(-2-V5-2+5)

Solving |2z — 5| < 3 gives the open interval (1,4).
Atz =1, we get > % — converges. At x = 4, 5 Z (—1)"(3x)
we get Y 1 — diverges. ' n?

n=1

3 Apply the Ratio Test:
R — 5, I — [1,4)

L=1
oo |(n+1)2 (Ba)"
=l So R = , centered at © = 0. At x = +1 3, alter-

Apply the Ratio Test: nating series converge.

1)2 4
L= lim (n+2) e ’ 1 11
no | M 7 R=g, I=[-33]
B x—|—4‘
7 6 o0 xn
So R = 7, centered at x = —4, giving interval ' ; (n+2)!

(—11,3). At both endpoints, the series converges

. . . Apply the Ratio Test:
by alternating series or comparison.

. a1 (n+2)
\R:Z I:}HJH L:£$>m+$f "
> (z—1)" :ILm ”i3':
&Z}—H—

n=0 So the series converges for all x.

This is the Maclaurin series for e*~!, which con-
verges for all real . ‘R =00, [I=(—00,00) ‘

R = oo, I:(—oo,oo)‘

21



nln(n

n=2

Apply the Ratio Test:

(z = 7)"
(n)

o (z — 1)t nln(n)
L= e D) =7y
=z -1

So R =1, centered at x = 7. Endpoints converge
by comparison and alternating series tests.

\R:L I:[6,8]\

o0

3

n=0

Let

n!(z+1)"

nn

n! (x + 1)”'

ap =
nTL

Then

(n+1)n"
o 1

Gn+41

n
= |z +1] w11 ()

n

and lim,, o (n/(n 4+ 1))" = 1/e. Hence

|z 41
o &

L

<1 center r = —1.

= R=e¢,

Check the endpoint t = —1+4+e. Thenx+1 =c¢
and

nle™
an = et
Since for all n > 1,
An+1 ( n )n 1
=el|l—7) >e-—=1
G, n+l1 e ’

the sequence {a,} is strictly increasing and a; =
e > 0. Thus lim, yscan > € # 0, so the series
diverges by the Divergence Test.

Check the endpoint t = -1 —e. Now z +1 = —¢
and |ant1/an| > 1 still, so lim|a,| # 0, and the
series again diverges.

‘R:e, I=(-1-—e, —1—|—e).‘

22

10.

(2z — 3)*"

an =
n 4m

Then

Gn+41
an

_ 22 -3 (n/(n+1)) (2:):—3)2.

4 n—00 4

Convergence requires
(22 — 3)2
4

Hence the radius about the center x =
_ (1 5
I=(3:3)

Ata:z%,?:c—?):lso
22n
an =

1

<l = |2z-3|]<2 =

is

N

R=1,

4n 1

Y

n4n
and >°0° L diverges.
Atx:%, 20 —3 = -2, s0
(-2
n4n

which again diverges.

n 4n n

4TL
- n 4"

an =

S|

e

[\el[é)8

).

2 n(z —5)"
; 2"(n+1)

Let
n(z—5)"

an = CTICESE
Then

An+1
an

(n+1)(z—
20t (n + 2)

r—5| (n+1)?
2 n(n+ 2)

5" 2*(n+1)
n(x —5)"

T —95
|

n—o0

Convergence requires ‘3:— 5|/2 <l,ied3<x<T.
Hence

‘R =2, centered at x = 5.‘

Atz =T an:%:%ﬂﬁl%o,sothe
series diverges.
Atz =3: a, = % = (—1)";%5, whose terms

do not tend to zero, so the series diverges.

=3, 7).

b <z < 5-



Multiple Choice Practice

1.

2.

(C) = = 0. Since the power series converges at x = 3, its radius satisfies R > 2. Only x = 0 lies in (—1, 3).

(B) x = 5. Convergence at x = 6 gives R > |6 — 4| = 2, so the series converges for |[x — 4| < 2. At x = 5,
54| =1<2.

(B) Radius = 3. The interval of convergence (—2,4) has center =5 = 1 and half-width 3.

(D) z = —2. A series centered at 2 with R = 3 converges for [z —2| <3. Atz =-2,|—-2-2|=4>3,s0
it must diverge.

(C) x = —10. Radius 6 about x = —4 covers |r + 4| < 6. At z = —10, | — 10 4+ 4| = 6 is an endpoint and
must be checked; other listed points lie outside or trivially inside.

(E) = = 2. Radius 4 about x = —2 covers |z + 2| < 4. At x =2, |2+ 2| = 4 is an endpoint—convergence
there is not guaranteed.

23



11.9 Representing Functions as Power Series (Solutions)

Free Response Practice

L f@)=1—5; 5. f(z) =

= Z 3t Z x™
=0 - n+1"
" n=0 5

) 1
Converges when [3z| <1, i.e. [z] < 3 R=3. Converges when || < 1, i.e. |z] <5.
4 6. f(z)=In(1 +2?)
2 =
1) =7
2
4 1 LA |
— In(1+ = / —d
o0 2\n
4 = n( 2x " _ _1\n—1 (:E )
_ASNCap(x) S ICHIE
7 n=0 n=1
00 4.9n 0 L 72n
_ n n = Lo
= e 2D
n=0 -
2 : —
Converges when ‘ ’ <1 ie o) <I.[R=1 Converges when |z°| < 1, ie. |z] < 1.
1 7. f(z) = arctan(2x)
M@ =g
2x 1
11 arctan(2z) :/ 5 du
f(x):§1 z? ~ 1—&-U( )21
-9 2z )"
=N (sl
Z( ) 2n+1

1 [o@)
— n=0
QZ( ) o0 22n+1 P
p— _17"/4 n .
x2 Z( ) 2n+1x
ZZW' =0
n=0

, Converges when |2z < 1, ie. [z < 3. |R=1.
Converges when |%-| < 1, i.e. [z < 3.

x
1
: R et
4. f(z) = — o 1+t
1+=x
) 1 LS e, <1
f(z) = 1+$ 1+ t4 part ’ 5
2 co1 - -
— 2 LI (—1)”/ n gy
S i et
o0
i n n+2. — Z(—l)n 1:4n+1 '
dn +1
n=0
Converges when |z| < 1. Converges when |z| < 1.
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9.f(x):/: LA

1+¢2
¢ 0o o9
T = o = e <,

n=0 n=0

T t o0 T P
——dt=> (=) [ *tlat

/0 1+12 2 (=) /0 a

n=0

:E2n+2

- nz:;](_l)n on +2°

Converges when |z| < 1.
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Multiple Choice Practice

1 o0
1. (A) oo > (=1)"a" for |z] < 1.
n=0

e 2n+1
2. (C t = -1" fi 1.
(C) arctanz Z( ) o1 o lz| <
n=0
o0 "
3. (A) In(1+x) Z — has radius 1.
oo oo
4. = (22)" =) 2"a" for |2z] < 1.
n=0 n=0
5. (A) Use the geometric series for H%:
1 oo
n 42n
;=) (1" It < 1.
1+¢ e
Multiply by t and integrate term-by-term:
t oo
— _1 nt2n+1
1+ 2 Z( ) ’
n=0
x ¢ 0 x _— oo p2n+2
——dt = —1”/75” dt = -1 .
/0 1+12 7;( ) 0 T;)( ) 2n + 2

6. (B) If = has R =1, then ;= has R =

26



11.10 Taylor Series (Solutions)

Free Response Practice

1. Suppose f(™(0) = (—1)"n!. Then
o f0)
fz) = DT

= Z(_
n=0
1

1+

Converges for |z| < 1.

2. Starting from 12— = >"°° 2", replace z — 4a:

=3 ()"

1—-4x =
oo
S
n=0
Radius R = 3
3. From In(1 4 u) = 320%  (—1)" 1% set u = —3z
o0
3x)
1 _ — _1\yn—1 (
n(l—3z) =) (1) .
n=1
= — N gl‘n
n=1 n
Valid for |z] < 3.
4. Coefficient of 2% in 3:
o0
3r (31:)”
N nZ:;) n!
Hence [2°] = %—?
5. Coefficient of 210 in arctan(z?):
o0 2\2k+1
arctan(z?) = ;0(—1)’6(‘;;“
B i( ) k42
& 2k +1

Solve 4k +2 =10 = k=2, so0 [z'9] = 1.

1
6. / dx as a series:
1+ 22

27

2 )
7. /e " dz as a series:

$2n+1

x:i(—nl!)” +C

o 2n+1

8. Find a power-series for /sin(mQ) dx:

0 (.’E2)2n+1

D‘”"m

—Z

o
x4n+3

/sin(:z:2) o= G O

n=0

4n+2

2n—i—1)"

47L
n=0 n!-

9. Evaluate the series > °°

(="

10. n=0 2n+1)!"

Evaluate the series > >2

00 _1) .
Z (2(n+)1)' = sin(1)

n=0

n—1
Evaluate the series Y7, %

11.

12. Taylor series for f(x) = centered at

a=2:

1—(x—2)

o0

1
1— (z—2) =2 (@2,

n=0

|z —2| < 1.



13. Taylor series for f(z) =In(1+ (z —3)) at a = 3:

In(1+(z—3)) = i(—l)"—l(”’:ﬁ)n

n=1

9

14. Power-series for xze®:

1
DA P

ze® =z — =
n! n!

n=0 n=
o a:‘n
- Y
ot (n—1)

|lz—3| < 1.

28

15. If f(z) = >0 ) %%, then

f™o) 1
nl 3
55!

FO(0) = 55

16. If the (x — 2)"-coefficient in the Taylor series of f
at a = 2 is &, then

567
22 1
77 56’
7!
M)y == =
f17(2) 56 90



Multiple Choice Practice

1.

(D). The Maclaurin series is

Given
f(O) =1, f/<0) =0, f”(O) =2, f(g)(o) =0,

the nonzero coefficients are

f0) _
apg — T = 1,
1
o0 2
2! 2
FO0) 41
a4 = =— =
4! 24 6
Thus
2, !
flz)=1+2 t T
(©). .
Z (?’x)n _ eBm
_0 n' B ’
which converges for all x.
(B).
> ()"
has radius %
(E).
1 S n .2n
1+$2:Z(_1) T ‘l‘|<17
n=0
1 - n 2n _ - n
/1”2 dx ;)(—1) /m dx_g( 1)
(A). .
Z (Qx)n _ 621
(B). Center 3, radius 2 — (1,5).
(A). )
xTL
f@y=> — = 0 =1
n=0
(A).
e . x2n
cosT = nz%(—l) )]




11.11 Taylor Remainder Estimate (Solutions)

Free Response Practice

1. Find the minimum degree n so that the Maclau-
rin polynomial for sin z approximates sin(0.2) with
error < 1076,

By Taylor’s Inequality,

|R(0.2)] < M

< oy 027

where M = max|y<(.2 |f+D(t)| = 1. Hence

O,2n+1

—6
1y <10

Test successive n:

0.2°  0.00032 6
0.2 0.000064
=9: = ~ 8. 1078 <1076,
n=>5 i 0 8.89 x 107" < 10

Therefore the smallest suitable degree is

n =>5.

2. Minimum n so |e*5 — T,,(0.5)] < 107%.
Remainder bound:

60'5 n+1
< 1074,

(n+1)
Test n+1=3,4,5,6:

|Ry| <

€05 .59
6!

son+1=6 — n =>5.

~358x107° <1074

3. T3 for cosx at 0:

& cos®(0) L z*
k! 2

&
B
I
8
I

4. Error bound for e, degree 2 on [0, 0.5]:

%% (0.5)>  €%.0.125

= ~ 0.0343.
3! 6

|Ra| <

30

5. Error bound for sinz, degree 3 on [—0.2,0.2]:

1-0.2%
Rs| <
|R3| < o1

~0.0016
DY

~ 6.67 x 107°.

. 3
6. Approximate arctan(0.5) by » — %-.

Next term bound:

lz|>  0.5°
R| <~ = —— = 0.00625.
= 5 5

. Determine for which x the degree-2 Taylor poly-

nomial
2

To(x) =x— %5

for In(1 + z) approximates In(1 4+ z) with error
< 0.0005.

Here f"(t) = —2/(1 4 t)3, so on |t| < |z| < 1 we
have

2
FRIGIE= A=)

By Taylor’s Inequality,

2 L

<Mpe 2 pe
6(1— [x[)? 3(1—lz])?

Ro(o)| < 7

|z <

We require
L < 0.0005.
3(1—|z))?

Taking cube roots gives

: |_‘r:x| < v0.0015 =~ 0.1153,

SO

7| < 0.1153 (1 — |z|)

— |z <0.103.

Thus



Multiple Choice Practice

1. (B) Error bound for %2 using degree-n Maclau-
rin:

0.2 02 n+1
|R,| < e (02" < 0.001.
(n+ 1!
Test n + 1:

e020.23

n+1=3: 2 ~ 0.009 > 0.001
0-20.2

ntl1=4:°% T ~ 0000081 < 0.001.

Hence the smallest n is 3.

2. (B). Degree-2 Taylor for cosz at 0:

3. (C). For e about a = 0, Taylor’s inequality gives
M
Ra(0.1)] < 57 101,

where M = maxg<t<o1 €’ = e®!. Thus

1(0.1)* (0.1
6 3

|R2(0.1)| <

4. (C). Error bound for sinz degree-3 on [—0.1,0.1]:

1-(0.1)* 1074
41 24

|R3| < ~ 0.00000417.

5. (E). The Maclaurin series for arctanz is

0o .
L 22 T S
arctan x = g (-1)

k=0

%+1 3 ' 5 7

The first three nonzero terms are x — x3/3 + 2° /5.
By the Alternating Series Estimation Theorem,
the error in truncating after these three terms is
bounded by the magnitude of the next term:

(-=1)2(0.5)7]  (0.5)7
7 7

‘error‘ < ‘

6. (D). Remainder for In(1+z) at z = 0.2, first two
nonzero terms:

3
Ry| < ﬂ _ 0.008

~ 0.0027.
3

e e

31

7. (B). We use Taylor’s Inequality for e* about 0

with n = 2:
|| .13
Rofa)] < 2

We test each endpoint:

60'05 (005)3

|r] =0.05: |Ra| < G
_ 1.0513 x 0.000125
6
~ 2.19 x 107° < 0.001,
|z] =0.1: |Ro| < 601((31)3
1.1052 x 0.001
~ 6
~ 1.84 x 107* < 0.001,
Iz =05: |Ry| < ‘305((?5)3
_ 1.6487 x 0.125
6

~ 0.0343 > 0.001.

8. (A). For sinz centered at 0 with degree 3, Taylor’s

Inequality gives

|];’4
R < —.
’ 3(5‘7)’ Y

Test the candidate intervals:

0.1* 1074 6
=0.1: <= x4 - )
lz| =0.1: |R3| < o o 4.17x107°% < 0.0001,
0.5%  0.0625
=0.5: <= = ~ 0. ) )
lz| =0.5: |R3| < 51 o 0.0026 > 0.0001

Therefore the largest listed interval is | [z| < 0.1



9.1 Differential Equations (Solutions)
Free Response Practice

1. Verify that y = 3% is a solution to 3 = 3y.

— e3x
y =33 =3y
2. Verify that y = sin(2z) is a solution to y” + 4y = 0.
y = sin(2x)
y' = 2cos(2x)

y" = —4sin(2x)
y" + 4y = —4sin(2z) + 4sin(2z) = 0

3. Verify that y = x2 + 1 satisfies 3/ = 2z.

y=z>+1

/

Yy =2z

4. Solve y' = 2z given y(1) = 5.

dy _ 9y

/dy—/Qajdfn

y=2°+C
Usey(l)=5: 5=124+C=>C=4

y:x2+4

5. Find the particular solution to % = 3e” with y(0) = 2.

d
—y—3e
/dy—/3e dx
y=23"+C
Use y(0)=2: 2=3"4+C=3+C=C=-1
6. Solve % = sin(x), with y () = 0.
dy—sm ()

/dy—/sm ) dx

y = —cos(z)+C
Usey(—):(): 0= —cos<)+C:>C—0

y = — cos(x)
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Multiple Choice Practice

1. Verify whether y = €% is a solution to 3 = 2.

y= e o =2
2y = 262 — ¢
(A) Yes
2. Is y = 22 + 1 a solution to y = 227
y=x>+1, 3y =2
(A) Yes

3. Which of the following functions satisfy 3’ = 3y?
(Select all that apply). (A) and (B)

4. Which of the following satisfy y” +y = 0?7 (Select
all that apply). (A), (B), and (D)

/dy:/ﬁxd:ﬁ

y=322+C

5. Solve ' = 6.

(D) y=322+C
dy
. Solve —= = .
6. Solve . cos(z)
y= /cos(a:) dx =sin(z) + C

(B) y =sin(z) + C

33

7. Solve y' = 2z, with y(1) = 6.

10.

. Find the particular solution to i e’,

/dyz/?a:da;

y=az>+C
y1)=6=1+C=6=C=5
(D)
dy -

. y(0) = 3.

y—/exdx—ex—i-C
y(0)=3=14+C=3=C=2

(B)

. True or False: If ¢ = 2y, then any solution graph

must be increasing wherever y > 0.
True: If y > 0, then ¢y = 2y > 0, so the graph
increases.

True or False: If 4/ = —y, then solution curves are
always decreasing when y > 0.

True: If y > 0, then 3/ = —y < 0, so the graph
decreases.



9.3 Separable Differential Equations (Solutions)

Free Response Practice

1. Solve v/ = zy
Note: y = 0 is a contant solution. If y £ 0, then

W_y
dr Y
1
—dy = xdx
Yy

1
/dy:/xdx
Yy

1
In|y| = §$2 +C

ly] = €27 HC = €. /2
y =£eC . /2
y = A"’ /?

where A is any constant, including O.

2y
T

2. Solve y' =
Note: y = 0 is a contant solution. If y # 0, then

dy _ 2y
dex  «x
1 2
—dy = —dzx
Y T

1
/dy:/Qda:
Y T

Inly| =2Inz|+C

lyl = € - |zf?
Yy = +e© - 22
y = Az?

where A is any constant, including 0.

3. Solve i = z(1 + 3?)

1
[ [

1
arctany = 5562 +C

1
y = tan (2372 + C)

34

4. Solve 3/ = 52, with y(0) =1

dy_ 2
da:_y
1
?dy:dx
/y_Qdy:/d:U
1 -1
—_—— = C =
Yy sHL=y x+C
-1
0O)=1=—=1=C=-1
y(0)=1= 5 =
-1
y_x—l

5. Solve 3/ = (1 — z?)y, with y(0) = 2

dy 2
(1 —
. (1—2%)y

1
“dy=(1—2%dx
; ( )

/;dy:/(l—xz)dx

1
Inly|=z— 2>+ C

3
‘y| _ eC’ . ea:—:c3/3
y= j:eC . e:cfx?’/S _ Aeasfcc3/3
y(0)=2=A=2
y = 2617:1:3/3

6. Solve y' = 2%(1 +y), with y(1) =0

dy 2
29 1
7 = 14y
1
—dy = 2% dx
1+y

1 2
/Hw@—/”“

In|l+yl= %aj3+C’
1+ y|=e@ . e®’/3
1+y =40 /3 = 4"/
y:Aex3/3—1
y(1)=0= AP =1= A=¢"1/3




7. Solve y = ¥

I_z
8. Solvey—y
dy _ =@
de vy
ydy = zdx
/ydy:/xdx
Lo 1,
v =22+C
2
9. Solve y' = 25
dy _ 2y
de  x+1
1 2
—dy = d
Y Y z+1 v
1 2
/d —/ dx
Y r+1
Inlyl=2mnz+1/+C
ly| = e“Ja + 12
y=+e(x+1)2 = Az + 1)
y=A(z+1)°

35



Multiple Choice Practice

1.

dy
C —= =
€ o =y
Separable: idy =xdr

dy
. (C) =
(C) =Lty

Not separable — cannot write as a product
9(z)h(y)

(C) y=Ce/f3

From % =22y = %dy =2?%dx = Inly| = %ms +C

(A) y=0Ca?

Fromg—g:%yiédy:%dmiln|y|:31n|z\+c
1

A =

(A) y=5—

From%:y2:>—i::U+C,usey(0):2:>

o=-1

. (B) y=3e"/3

Separable: %dy =(1-2%)de=Ily|=z— 13+
C, then apply initial condition

(B) y=Ca?

From % =2 %dy = 2dz = Inly| = 2In|z[+C

Tz

3
(A) y2=%+0

From%z%#yd(y:ﬁdm#%yz:%ﬁ—i-(f
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