Math 2300: Final Exam Practice

1. Evaluate the integral:
$$\int \frac{2x}{x^2 + 5} dx$$

2. Evaluate the integral:
$$\int \ln(x) dx$$

3. Evaluate the integral:
$$\int \frac{x+1}{(x-1)(x+2)} dx$$
 using partial fraction decomposition.

4. Evaluate the integral:
$$\int \frac{1}{x^2 \sqrt{x^2 - 9}} dx$$

5. Evaluate the integral:
$$\int xe^{x^2} dx$$
 using an appropriate method.

6. Find the slope
$$\frac{dy}{dx}$$
 of the parametric curve at $t = \pi/6$, where $x(t) = \sin(2t)$ and $y(t) = \cos(t)$

7. Find the average value of the function
$$f(x) = \sqrt{x}$$
 on the interval [1, 4].

8. Find the volume of the solid with base bounded by
$$y = x^2$$
 and $y = 4$, where cross-sections perpendicular to the x-axis are semicircles.

9. Set up an integral representing the volume of the solid formed by rotating the region bounded by
$$y = \sqrt{x}$$
, $y = 0$, and $x = 4$ about the x-axis.

1

10. Set up, but do not evaluate, an integral representing the area enclosed by one loop of the curve:

$$r(\theta) = 3\sin(2\theta)$$

11. Find the exact sum of the series:

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$$

by recognizing it as a telescoping series.

- 12. Determine whether the following series converges or diverges: $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n+2}$
- 13. Find the radius of convergence and interval of convergence for the series:

$$\sum_{n=1}^{\infty} \frac{(x+2)^n}{n2^n}$$

- 14. Find the first four nonzero terms of the Taylor series for $f(x) = e^{-x^2}$ centered at a = 0.
- 15. Find the third-degree Taylor polynomial centered at a = 0 for $f(x) = \sin(2x)$.
- 16. Find the third degree Taylor polynomial for $f(x) = \cos x$ centered at $a = \pi/6$. Use Taylor's Inequality to give an upper bound on the error if this approximation is used on the interval $0 < x < \pi/3$.
- 17. Solve the differential equation:

$$\frac{dy}{dx} = xy^2, \quad y(0) = 1$$