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The Story of Infinite Series

We begin with a sequence of numbers a1, a2, a3, . . . and ask a natural question: What happens if we add them all
together? This leads us to the concept of an infinite series, written as∑

an = a1 + a2 + a3 + · · · .

Can We Find the Exact Sum?

In special cases, we can compute the exact value of the infinite series:

• Telescoping Series: If many terms cancel out when we write the partial sums, we have a telescoping series.
For example: ∑(

1

n
− 1

n+ 1

)
.

We compute the partial sum Sn, observe cancellation, and take the limit as n → ∞.

• Geometric Series: For a geometric series of the form
∑

arn−1, the sum is given by

∞∑
n=1

arn−1 =
a

1− r
, when |r| < 1.

In these cases, we not only know that the series converges—we know exactly what it converges to.

Usually, We Can’t Find the Sum Exactly

Most infinite series are not so convenient. In general, we can’t compute the sum directly, so we shift our focus to
a different question: Does the series converge or diverge?

Step 1: Positive-Term Series

We begin with series whose terms are all positive. Several tests help us determine whether such a series converges:

• Test for Divergence: If limn→∞ an ̸= 0, then the series diverges. In fact, this test applies to any series,
even if the terms are not all positive!

• Integral Test: If an = f(n) where f is positive, continuous, and decreasing, then∑
an converges ⇔

∫ ∞

1
f(x) dx converges.

• Direct Comparison Test: Compare an to a known benchmark series bn.

– If 0 ≤ an ≤ bn and
∑

bn converges, then
∑

an also converges.

– If 0 ≤ bn ≤ an and
∑

bn diverges, then
∑

an also diverges.

Benchmark series are often geometric series or p-series, since their convergence behavior is well understood.

• Limit Comparison Test: If an, bn > 0 and

lim
n→∞

an
bn

= c with 0 < c < ∞,

then either both series converge or both diverge.

1



Step 2: Alternating Series and Mixed Signs

Series are not required to have only positive terms. In fact, many important series include both positive and
negative terms. We begin with the especially nice case of alternating series, where the signs alternate in a
regular pattern. If the terms alternate and decrease to zero, we can apply the:

• Alternating Series Test: For a series of the form
∑

(−1)n+1bn with bn > 0, if

bn+1 ≤ bn and lim
n→∞

bn = 0,

then the series converges.

When a series has both positive and negative terms, we test for:

• Absolute Convergence: If
∑

|an| converges, then
∑

an converges absolutely (and hence converges).

• Conditional Convergence: If
∑

an converges but
∑

|an| diverges, then the series converges conditionally.

A powerful tool in these cases is the:

• Ratio Test: Let

L = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ .
Then:

– If L < 1, the series converges absolutely.

– If L > 1 or L = ∞, the series diverges.

– If L = 1, the test is inconclusive.

Estimating the Sum: Remainder Estimates

Even when we can’t find the exact sum, we might want to estimate how close our partial sum Sn is to the true
value.

• Alternating Series Remainder:
|Rn| = |S − Sn| ≤ bn+1

The error is no larger than the next term.

• Integral Test Remainder: ∫ ∞

n+1
f(x) dx < Rn <

∫ ∞

n
f(x) dx

This provides upper and lower bounds for the error when using the integral test.

In Summary

• Some series can be summed exactly (e.g., telescoping, geometric).

• For most series, we focus on convergence rather than the exact value.

• Positive-term series are the starting point, with several comparison-based tests.

• Alternating series are easier to manage due to cancellation.

• Absolute convergence guarantees convergence even for mixed-sign series.

• Remainder estimates help quantify how close a partial sum is to the true sum.
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Summary of Series Types

Series Type General Form Convergence Behavior

Telescoping Series Terms cancel in successive pairs, e.g.,∑(
1
n − 1

n+1

) Partial sums simplify to a finite number of terms; con-

vergence depends on the limit of the remaining terms.

Often converges due to cancellation.

Geometric Series
∑

arn−1 Converges if |r| < 1 to a
1−r . Diverges if |r| ≥ 1.

p-Series
∑ 1

np , where p > 0 Converges if p > 1. Diverges if 0 < p ≤ 1.

Alternating Series
∑

(−1)nbn or
∑

(−1)n+1bn, bn > 0 Converges if bn decreases and lim bn = 0. May converge

conditionally or absolutely.

Summary of Convergence Tests

Test Applies To Conclusion

Test for Divergence Any series
∑

an If limn→∞ an ̸= 0, then the series diverges. If the limit

is 0, the test is inconclusive.

Integral Test Series with positive, decreasing f(n) = an If
∫∞
1

f(x) dx converges, so does
∑

an. If the integral

diverges, so does the series.

Direct Comparison Test Positive-term series
∑

an,
∑

bn If 0 ≤ an ≤ bn and
∑

bn converges, then
∑

an converges.

If an ≥ bn ≥ 0 and
∑

bn diverges, then
∑

an diverges.

Limit Comparison Test Positive-term series
∑

an,
∑

bn If limn→∞
an
bn

= c with 0 < c < ∞, then both series

converge or both diverge.

Alternating Series Test Alternating series
∑

(−1)nbn with bn > 0 If bn is decreasing and limn→∞ bn = 0, then the series

converges.

Absolute Convergence Any series
∑

an If
∑

|an| converges, then
∑

an converges absolutely (and

hence converges).

Ratio Test Any series
∑

an Compute L = limn→∞
∣∣an+1

an

∣∣: if L < 1, series converges

absolutely; if L > 1 or L = ∞, series diverges; if L = 1,

test is inconclusive.

Summary of Remainder Estimates

Test Remainder Estimate Interpretation

Alternating Series Test Remainder |Rn| = |S − Sn| ≤ bn+1 For an alternating series satisfying the Alter-

nating Series Test, the error in approximating

the sum by the nth partial sum is at most

the absolute value of the next term. Error de-

creases as n increases.

Integral Test Remainder
∫∞
n+1

f(x) dx < Rn <
∫∞
n

f(x) dx For a positive, decreasing, continuous function

f(n) = an, the true remainder lies between

two improper integrals. Useful for estimating

or bounding the error in partial sums.

3



Sequences

Let an be a sequence. To evaluate lim
n→∞

an, follow these steps:

• Step 1: Try direct substitution.

– If an = 1
n ,

5n+2
2n+3 ,

n2

n2+1
, try plugging in n → ∞.

– Use leading-term analysis for rational expressions.

• Step 2: Simplify algebraically if needed.

– Factor, divide numerator/denominator by highest power of n, or simplify complex expressions.

• Step 3: Use known limit rules.

– lim
n→∞

1

np
= 0 for any p > 0

– lim
n→∞

rn = 0 if |r| < 1

– lim
n→∞

n
√
a = 1 for any a > 0

– lim
n→∞

(
1 +

1

n

)n

= e

• Step 4: Apply L’Hôpital’s Rule (only for continuous functions).

– Define f(x) from an, take limx→∞ f(x) if it’s indeterminate.

– Use only when an is expressible as a continuous function of x.

• Step 5: Use squeeze theorem if appropriate.

– Useful for trigonometric sequences or oscillating behavior.

– Example: lim
n→∞

sinn

n
= 0

• Step 6: Use logarithms for exponential powers.

– For an = n1/n, an =
(
1 + 1

n

)n
, take ln, find the limit, then exponentiate.

• Step 7: Consider behavior of factorials.

– Use growth comparisons: n! ≫ nn ≫ rn ≫ np

– Example: lim
n→∞

n2

n!
= 0

Find the limit of each of the following sequences as n → ∞. Show your work and indicate which method you
are using (e.g., algebraic simplification, squeeze theorem, logarithmic substitution, etc.).

1. lim
n→∞

2n2 + 1

3n2 − 5

2. lim
n→∞

n2 + 3n

4n2 + 1

3. lim
n→∞

1

n0.5

4. lim
n→∞

ln(n+ 1)

n

5. lim
n→∞

sin(n)

n

6. lim
n→∞

n1/n

7. lim
n→∞

n2

n!

8. lim
n→∞

cos(n) + n√
n2 + 1

9. lim
n→∞

sin(n)√
n2 + 4− n

10. lim
n→∞

√
n2 + sin(n)

n

4



Series & Partial Sums

• Start with a sequence {an}, where each an is a real number. The associated series is the sum

∞∑
n=1

an = a1 + a2 + a3 + · · ·

• Define the sequence {Sn}, where each partial sum is

Sn = a1 + a2 + · · ·+ an =
n∑

k=1

ak

• The series
∑

an converges if the sequence of partial sums {Sn} has a finite limit:

lim
n→∞

Sn = S

In this case, we write:
∞∑
n=1

an = S

If limSn does not exist or is infinite, then the series diverges.

• To find the sum of a series from partial sums:

– If you’re given a formula for Sn, compute

lim
n→∞

Sn

– That limit is the value of the series:

∞∑
n=1

an = lim
n→∞

Sn

Each problem gives the partial sum Sn =
∑n

k=1 ak. Find the value of the infinite series
∑∞

n=1 an by computing
limn→∞ Sn.

1. Sn = 3− 1

n

2. Sn =
5n

n+ 1

3. Sn =
2n2 + 1

n2 + 2n+ 1

4. Sn =
4n2

n2 + 1

5. Sn = 1− 2

n2 + 1

6. Sn =
6n2 + 3n+ 2

2n2 + 5n+ 1

7. Sn =
5n

ln(n+ 1) + 2n

8. Sn =
n+ 4√
n2 + 9

9. Sn =
4n+ ln(n)

3n+ 1

10. Sn =
n2 + 1

n lnn+ 1
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Telescoping Series

• Step 1: Identify the general term.
Examine the structure of the term an. If it is a rational expression, it may telescope.

• Step 2: Decompose using partial fractions (if needed).
Rewrite an as a difference of simpler terms:

1

n(n+ 1)
=

1

n
− 1

n+ 1

• Step 3: Write out the first few terms.
Expand the partial sum SN = a1 + a2 + · · ·+ aN to observe a cancellation pattern.

• Step 4: Look for cancellation.
Most terms will cancel out in a telescoping series, leaving only a few from the beginning and end.

• Step 5: Take the limit of the partial sum.
After cancellation, evaluate the simplified expression:

lim
N→∞

SN

• Step 6: Conclude the sum of the series.
The value of the infinite series is:

∞∑
n=1

an = lim
N→∞

SN

Evaluate the following infinite series by identifying the telescoping nature and computing the sum.

1.
∞∑
n=1

(
1

n
− 1

n+ 1

)

2.
∞∑
n=1

4

n(n+ 1)

3.
∞∑
n=2

1

n2 − 1

4.
∞∑
n=1

(
1

n+ 1
− 1

n+ 3

)

5.
∞∑
n=1

ln

(
n+ 1

n

)

6.
∞∑
n=1

2

n(n+ 2)

7.
∞∑
n=1

(
1

n2
− 1

(n+ 1)2

)

8.
∞∑
n=2

1

n(n− 1)

9.
∞∑
n=1

(√
n+ 1−

√
n
)

10.
∞∑
n=1

(
1

n
− 1

n+ 2

)
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Geometric Series

• Step 1: Recognize or rewrite the series into geometric form.
A geometric series has the form:

∞∑
n=0

arn or

∞∑
n=1

arn−1.

Use algebraic manipulation if needed:

– Factor out constants.

– Reindex the starting value of n.

– Rewrite powers to match rn format.

• Step 2: Identify a and r.
Once in standard form, determine:

– a: the first term of the series.

– r: the common ratio between terms.

• Step 3: Check for convergence.
A geometric series converges if |r| < 1, and diverges otherwise.

• Step 4: Use the geometric series formula (if convergent).

∞∑
n=0

arn =
a

1− r
, for |r| < 1.

For series starting at n = 1:

∞∑
n=1

arn =
ar

1− r
,

∞∑
n=1

arn−1 =
a

1− r
.

Note: in each case, the formula is the first term of the series divided by 1− r.

1.
∞∑
n=0

(
1

2

)n

2.
∞∑
n=1

(
3

4

)n

3.
∞∑
n=0

5

10n

4.
∞∑
n=1

1

3n

5.

∞∑
n=1

(
2

3

)n

6.
∞∑
n=0

7 ·
(
2

3

)n

7.
∞∑
n=1

1

2n+1

8.
∞∑
n=2

1

5n

9.
∞∑
n=0

4

3n+2

10.

∞∑
n=2

4n

7n−2
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p-Series

• Step 1: Identify the form of the series.
A p-series has the form:

∞∑
n=1

1

np
, where p > 0.

• Step 2: Determine the value of p.
Carefully extract the exponent from the denominator and simplify if needed (e.g., square roots, frac-
tional exponents).

• Step 3: Apply the convergence test for p-series.

– If p > 1, the series converges.

– If 0 < p ≤ 1, the series diverges.

• Step 4: Recognize disguised p-series.
Some series may not look like 1

np at first, but can be rewritten or compared to one:

– Example: 1√
n
= 1

n1/2 is a p-series with p = 1
2 .

– Use comparison tests when the series is close to a p-series but not exactly in that form.

Determine whether each of the following series converges or diverges.

1.

∞∑
n=1

1

n

2.

∞∑
n=1

1

n2

3.

∞∑
n=1

1√
n

4.

∞∑
n=1

1

n3

5.

∞∑
n=1

1

n0.9

6.

∞∑
n=1

1

n5/4

7.

∞∑
n=1

1

n1.0001

8.

∞∑
n=1

1

n0.99

9.

∞∑
n=1

1

n4/3

10.

∞∑
n=1

n2

√
n9
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Test For Divergence

• Step 1: Identify the general term an of the series.
Start with a series of the form: ∑

an

• Step 2: Compute the limit of the general term.
Evaluate:

lim
n→∞

an

• Step 3: Apply the conclusion:

– If lim
n→∞

an ̸= 0 or the limit does not exist, then the series diverges.

– If lim
n→∞

an = 0, the test is inconclusive. The series may converge or diverge.

• Important Notes:

– The Test for Divergence cannot prove convergence.

– This test works for all types of series (not just positive-term series).

Apply the Test for Divergence. If the limit is nonzero or does not exist, the series diverges. If the limit is zero,
the test is inconclusive.

1.
∞∑
n=1

n

n+ 1

2.
∞∑
n=1

n2 + 3

2n2 + 1

3.
∞∑
n=1

sinn

n

4.
∞∑
n=1

cos

(
1

n

)

5.
∞∑
n=1

5n− 4

n

6.
∞∑
n=1

3n2

n2 + 1

7.
∞∑
n=1

tan

(
1

n

)

8.
∞∑
n=1

1√
n

9.
∞∑
n=1

1

n2 + 1

10.
∞∑
n=1

1

n
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Integral Test

• Step 1: Identify the series.
The series should be of the form:

∞∑
n=1

an, where an = f(n)

and f(x) is the corresponding continuous, positive, and decreasing function.

• Step 2: Check the conditions for the Integral Test.
The function f(x) must satisfy:

– f(x) is continuous for x ≥ 1.

– f(x) is positive for x ≥ 1.

– f(x) is decreasing for x ≥ 1.

• Step 3: Set up the improper integral.
Compute the corresponding improper integral:∫ ∞

1
f(x) dx

• Step 4: Evaluate the integral.
Use appropriate integration techniques (substitution, integration by parts, etc.) to compute the im-
proper integral.

• Step 5: Apply the results of the integral:

– If
∫∞
1 f(x) dx converges, then the series

∑∞
n=1 an converges.

– If
∫∞
1 f(x) dx diverges, then the series

∑∞
n=1 an diverges.

Use the Integral Test to determine whether each series converges or diverges.

1.

∞∑
n=2

1

n lnn

2.

∞∑
n=2

1

n(lnn)2

3.

∞∑
n=2

1

n(lnn)(ln lnn)

4.

∞∑
n=2

1

n
√
lnn

5.

∞∑
n=1

1

np
(general case)

6.

∞∑
n=1

√
lnn

n

7.

∞∑
n=1

1

n2 + 1

8.

∞∑
n=1

2n

n4 + 25

9.

∞∑
n=1

3n2

n6 + 36

10.

∞∑
n=1

4n3

n8 + 64
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Direct Comparison Test

• Step 1: Identify the general term an of the series.

You are given a series
∑

an with an > 0.

• Step 2: Choose a known comparison series
∑

bn.

Select a benchmark series with known convergence behavior—usually a geometric series or a p-series.

• Step 3: Establish an inequality between an and bn.

– To show convergence, prove 0 ≤ an ≤ bn for all sufficiently large n, and
∑

bn converges.

– To show divergence, prove 0 ≤ bn ≤ an for all sufficiently large n, and
∑

bn diverges.

• Step 4: Conclude the behavior of
∑

an.

– If an ≤ bn and
∑

bn converges, then
∑

an also converges.

– If an ≥ bn and
∑

bn diverges, then
∑

an also diverges.

• Important Notes:

– The comparison must involve non-negative terms.

– The inequality must go in the correct direction depending on whether you’re trying to prove
convergence or divergence.

– If you cannot establish a valid inequality, try the Limit Comparison Test instead.

Use the Direct Comparison Test to determine whether each series converges or diverges by comparing it to a
known p-series or geometric series.

1.

∞∑
n=1

1

n2 + 1

2.

∞∑
n=1

2n

3n + 5

3.

∞∑
n=1

1√
n+ n

4.
∞∑
n=1

n

n3 + 1

5.
∞∑
n=1

3n2 + 2

n4 + n2 + 1

6.

∞∑
n=1

2n

4n + n

7.

∞∑
n=1

n

n2 + 2

8.

∞∑
n=1

5n

3n + 2n

9.

∞∑
n=1

1 + sin2
(
1
n

)
n

10.
∞∑
n=1

n!

nn
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Limit Comparison Test

• Step 1: Identify the given series.

You are given a series of the form
∑

an, where an > 0 for all n sufficiently large.

• Step 2: Choose a comparison series
∑

bn.
Pick a series with known convergence behavior (typically a p-series or geometric series) that resembles
an for large n.

• Step 3: Compute the limit of the ratio.
Evaluate:

L = lim
n→∞

an
bn

.

• Step 4: Apply the conclusion of the test.
If 0 < L < ∞, then either both series converge or both diverge.

• Important Notes:

– Use this test when an and bn are positive for large n.

– The Limit Comparison Test often works when the Direct Comparison Test fails (e.g., when in-
equalities are hard to establish).

Use the Limit Comparison Test to determine whether each series converges or diverges.

1.

∞∑
n=1

n2 + 3n

n3 − 4

2.

∞∑
n=1

n2

n4 − 1

3.

∞∑
n=1

√
n+ 1

n2 + 5

4.

∞∑
n=1

1

n+
√
n

5.

∞∑
n=1

1
√
n+

√
n+ 1

6.

∞∑
n=1

1√
n4 + 3n

7.

∞∑
n=1

3n + 2n

4n + 1

8.

∞∑
n=1

5

n2 + (−1)n

9.

∞∑
n=1

4

n2 + tan−1(n)

10.

∞∑
n=1

5

n2 + (−1)n
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Alternating Series Test

• Step 1: Identify the alternating form.
The series must have alternating signs:∑

(−1)nbn or
∑

(−1)n+1bn, with bn > 0.

• Step 2: Check the two AST conditions.

– bn is decreasing: bn+1 ≤ bn for all n (or eventually).

– lim
n→∞

bn = 0.

• Step 3: Conclude convergence.
If both conditions are met, then the series converges.

• Step 4: If AST fails, try another test.

– If bn is not decreasing or lim bn ̸= 0, AST does not apply.

– Use the Test for Divergence if needed.

Determine whether each series converges or diverges. If the Alternating Series Test does not apply, state why.

1.
∞∑
n=1

(−1)n

n

2.
∞∑
n=1

(−1)n+1

n2

3.
∞∑
n=1

(−1)n√
n

4.
∞∑
n=1

(−1)n

ln(n+ 1)

5.
∞∑
n=1

(−1)nn

n+ 1

6.
∞∑
n=1

(−1)n

n+ (−1)n

7.
∞∑
n=1

(−1)n

n1/3

8.
∞∑
n=1

(−1)n

n2 + lnn

9.
∞∑
n=1

(−1)n · sin(1/n)
n

10.
∞∑
n=1

(−1)n · 1

n0.9
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Absolute Convergence

• Step 1: Start with the given series
∑

an, which may include negative or alternating terms.

• Step 2: Test for absolute convergence by analyzing
∑

|an|.

– Use any appropriate convergence test:

∗ p-series, geometric series, comparison, limit comparison, ratio, root, etc.

– If
∑

|an| converges, then the original series converges absolutely.

• Step 3: If
∑

|an| diverges, try the Alternating Series Test (if applicable).

– AST requires:

∗ bn = |an| > 0

∗ bn is decreasing (eventually)

∗ lim
n→∞

bn = 0

– If AST applies, the series converges conditionally.

• Step 4: If neither test shows convergence, the series diverges.

– For example, if lim
n→∞

an ̸= 0, or neither
∑

|an| nor AST applies.

• Summary:

–
∑

an converges absolutely if
∑

|an| converges.
–
∑

an converges conditionally if
∑

an converges but
∑

|an| diverges.
–
∑

an diverges if it fails both.

For each of the following series, determine whether it converges absolutely, converges conditionally, or diverges.

1.
∞∑
n=1

(−1)n

n

2.
∞∑
n=1

(−1)n

n2

3.
∞∑
n=1

(−1)n√
n

4.
∞∑
n=1

(−1)n lnn

n

5.
∞∑
n=1

sin(n2 + 1)

n3

6.
∞∑
n=1

(−1)n

(n+ 1) ln(n+ 1)

7.
∞∑
n=1

(−1)n

n!

8.
∞∑
n=1

cos(n)

n3/2

9.
∞∑
n=2

(−1)n

n(lnn)2

10.
∞∑
n=1

sin(n)

n2

14



Ratio Test

• Step 1: Identify the general term. Let an be the general term of the series
∑

an.

• Step 2: Compute the ratio. Find the limit

L = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ .
• Step 3: Interpret the result.

– If L < 1, the series converges absolutely.

– If L > 1 or L = ∞, the series diverges.

– If L = 1, the test is inconclusive.

• Step 4: Use absolute values. Always apply the test to
∣∣∣an+1

an

∣∣∣ to determine absolute convergence.

If the test shows convergence, the original series converges (even if alternating).

• Step 5: If inconclusive, try another test. Consider:

– Alternating Series Test (AST)

– Comparison / Limit Comparison Test

Determine whether each series converges absolutely, converges conditionally, or diverges using the Ratio Test.

1.
∞∑
n=1

5n

n2

2.
∞∑
n=1

n2

2n

3.
∞∑
n=1

2n

nn

4.
∞∑
n=1

2n

n!

5.
∞∑
n=1

n!

3n

6.
∞∑
n=1

3n · n!
nn

7.
∞∑
n=1

n!

(2n)!

8.
∞∑
n=1

(2n)!

n! · nn

9.
∞∑
n=1

(−1)n · n

2n

10.
∞∑
n=1

(−1)n · n
2

n!
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Remainder Estimates

Alternating Series Remainder

• Applies to: An alternating series of the form
∞∑
n=1

(−1)n+1bn, where:

– bn > 0

– bn is decreasing

– lim
n→∞

bn = 0

• Remainder estimate: The error when ap-
proximating the sum by the first n terms satis-
fies:

|Rn| = |S − Sn| ≤ bn+1

• Steps:

– Confirm the series meets the conditions of
the Alternating Series Test.

– Compute or estimate bn+1 to bound the
error.

– Use this bound to describe how accurate
the partial sum Sn is.

Integral Test Remainder

• Applies to: A positive, decreasing, continu-
ous function f(n) where an = f(n), and

∑
an

is approximated using the Integral Test.

• Remainder estimate: If Sn =
∑n

k=1 ak, then
the remainder Rn = S − Sn satisfies:∫ ∞

n+1
f(x) dx < Rn <

∫ ∞

n
f(x) dx

• Steps:

– Confirm that f(x) is positive, continuous,
and decreasing for x ≥ n.

– Evaluate (or estimate) both bounds:

Lower bound:

∫ ∞

n+1
f(x) dx,

Upper bound:

∫ ∞

n
f(x) dx

– Conclude that the true error lies between
the two.

For Problems 1–5, use the Alternating Series Remainder Theorem. For Problems 6–10, use the Integral Test
Remainder estimate. Show all reasoning.

Alternating Series Remainder

1. Approximate
∞∑
n=1

(−1)n+1

n2
using the first 4 terms.

Estimate the error.

2. Approximate

∞∑
n=1

(−1)n

n3 + 1
using the first 3 terms.

How accurate is your approximation?

3. Find how many terms are needed to approximate
∞∑
n=1

(−1)n+1

n5
to within 0.0001.

4. Use the first 5 terms of

∞∑
n=1

(−1)n
ln(n+ 1)

n2
to ap-

proximate the sum. Estimate the error.

5. Determine the minimum number of terms needed

to estimate

∞∑
n=2

(−1)n

n lnn
with error less than 0.01.

Integral Test Remainder

6. Approximate

∞∑
n=1

1

n2 + 1
using the first 5 terms.

Use the Integral Test to bound the error.

7. Use the Integral Test to estimate the remainder

when approximating

∞∑
n=1

1

n lnn
from n = 2 to

n = 10.

8. Estimate

∞∑
n=1

1

n3/2
using the first 8 terms, and

bound the error using the Integral Test.

9. Find the smallest n such that the partial sum
n∑

k=2

1

k(ln k)2
approximates the infinite series to

within 0.05.

10. Approximate
∞∑
n=2

lnn

n3
using the first 6 terms. Es-

timate how close your approximation is to the true
value.
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Taylor Polynomials

1. Recall the Taylor polynomial formula:

Tn(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 + · · ·+ f (n)(a)

n!
(x− a)n

2. Compute the derivatives of f(x):

– Find f (k)(x) for k = 0, 1, 2, . . . , n.

3. Evaluate each derivative at x = a:

f(a), f ′(a), f ′′(a), . . . , f (n)(a)

4. Substitute into the Taylor formula:

– Plug the values from step 3 into the formula from step 1.

5. Simplify:

– Expand and combine like terms to write the polynomial in standard form.

Optional Checks

• Check the number of terms: Make sure you include the first n nonzero terms.

• Use known Taylor series:

– For functions like ex, sinx, cosx, ln(1 + x), use known Maclaurin series if centered at a = 0.

Use the definition of a Taylor series to find the first four nonzero terms of the series for f(x) centered at the
given value of a.

1. f(x) = x2ex, a = 0

2. f(x) =
1

1 + x2
, a = 1

3. f(x) = 4
√
x, a = 16

4. f(x) = cos(x2), a = 0

5. f(x) = sin(2x), a =
π

4

6. f(x) = ln(1 + 2x), a = 0

7. f(x) = tan−1(x), a = 0

8. f(x) =
x

1− x
, a = 0

9. f(x) = ex
2
, a = 0

10. f(x) =
1√
1− x

, a = 0

17



Mixed Series Practice

For each problem below, determine convergence/divergence, evaluate limits or sums, or justify the requested
conclusion. Show clear reasoning.

1. Evaluate lim
n→∞

√
n2 + cosn

n
.

2. Evaluate lim
n→∞

(
1− 1

2n

)3n

.

3. Suppose Sn =

n∑
k=1

ak =
n2

ln(n+ 1) + 3n
. Determine whether

∑∞
n=1 an converges and, if so, to what value.

4. Suppose Sn =
n∑

k=1

ak =
4n2 + 1

2n2 + 5n+ 1
. Determine whether

∑∞
n=1 an converges and, if so, to what value.

5. If
∑

an = 5 and
∑

bn = 4, find
∑

(2an − 3bn).

6. Find the sum of the geometric series:
∞∑
n=2

6

4n
.

7. Determine whether the series
∞∑
n=2

n4 + 3

n(n+ 1)2
converges. If it converges, find its sum.

8. Determine whether the series
∞∑
n=1

4n

5n − 1
converges.

9. Let an =
n2

2n
. Use the Ratio Test to determine whether

∑
an converges.

10. Use the Ratio Test to determine for which values of c > 0 the series

∞∑
n=1

cn

n
converges.

11. Determine whether the series
∞∑
n=1

2n

n3 + cosn
converges.

12. Determine whether

∞∑
n=1

sin(n3)

n3 + 1
converges absolutely, conditionally, or diverges.

13. Determine whether
∞∑
n=3

(−1)n

n2 − 4
converges absolutely, conditionally, or diverges.

14. Use the Alternating Series Remainder Theorem to estimate the error when approximating

∞∑
n=1

(−1)n
1

n3
using

the first 4 terms.

15. Use the Integral Test to show that

∞∑
n=2

1

n ln(n)2
converges. Estimate the error when approximating the series

with the first 5 terms.
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Solutions

Sequences

1. lim
n→∞

2n2 + 1

3n2 − 5

= lim
n→∞

2 + 1
n2

3− 5
n2

=
2

3

2. lim
n→∞

n2 + 3n

4n2 + 1

= lim
n→∞

1 + 3
n

4 + 1
n2

=
1

4

3. lim
n→∞

1

n1/2

= lim
n→∞

1√
n
= 0

4. lim
n→∞

ln(n+ 1)

n

Let f(x) = ln(x+1)
x . Then:

lim
x→∞

f(x) = lim
x→∞

1

x+ 1
= 0

Therefore,

lim
n→∞

ln(n+ 1)

n
= 0

5. lim
n→∞

sin(n)

n
Since −1 ≤ sin(n) ≤ 1 for all n, we have:

− 1

n
≤ sin(n)

n
≤ 1

n

Taking the limit of all three expressions:

lim
n→∞

sin(n)

n
= 0

6. lim
n→∞

n1/n

Let an = n1/n. Take logarithms:

ln an =
lnn

n
→ 0 ⇒ an = e0 = 1

Therefore,
lim
n→∞

n1/n = 1

7. lim
n→∞

n2

n!
For n ≥ 5, we have:

n! ≥ n(n− 1)(n− 2) ≥ n3

6

Then:

0 <
n2

n!
≤ n2

n3

6

=
6

n

Since lim
n→∞

6

n
= 0, the squeeze theorem gives:

lim
n→∞

n2

n!
= 0

8. lim
n→∞

cos(n) + n√
n2 + 1

Write:
cos(n) + n√

n2 + 1
=

n+ cos(n)

n
√
1 + 1

n2

Then:

=
1 + cos(n)

n√
1 + 1

n2

→ 1 + 0

1
= 1

9. lim
n→∞

sin(n)√
n2 + 4− n

sin(n)√
n2 + 4− n

=
sin(n) · (

√
n2 + 4 + n)

4

Since sin(n) is bounded and
√
n2 + 4+n → ∞, the

numerator oscillates without settling. The limit
does not exist.

10. lim
n→∞

√
n2 + sin(n)

n

Use bounds:√
n2 − 1 ≤

√
n2 + sin(n) ≤

√
n2 + 1

Then:

√
n2 − 1

n
≤
√

n2 + sin(n)

n
≤

√
n2 + 1

n

⇒
√
1− 1

n2
≤
√
n2 + sin(n)

n
≤
√

1 +
1

n2

Taking limits of both bounds gives:

lim
n→∞

√
n2 + sin(n)

n
= 1
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Series & Partial Sums

1. Sn = 3− 1

n

lim
n→∞

Sn = 3

2. Sn =
5n

n+ 1

=
5

1 + 1
n

→ 5

3. Sn =
2n2 + 1

n2 + 2n+ 1

=
2 + 1

n2

1 + 2
n + 1

n2

→ 2

1
= 2

4. Sn =
4n2

n2 + 1

=
4

1 + 1
n2

→ 4

5. Sn = 1− 2

n2 + 1

2

n2 + 1
→ 0 ⇒ limSn = 1

6. Sn =
6n2 + 3n+ 2

2n2 + 5n+ 1

=
6 + 3

n + 2
n2

2 + 5
n + 1

n2

→ 6

2
= 3

7. Sn =
5n

ln(n+ 1) + 2n

=
5

ln(n+1)
n + 2

→ 5

0 + 2
=

5

2

8. Sn =
n+ 4√
n2 + 9

=
1 + 4

n√
1 + 9

n2

→ 1

1
= 1

9. Sn =
4n+ ln(n)

3n+ 1

=
4 + lnn

n

3 + 1
n

→ 4

3

10. Sn =
n2 + 1

n lnn+ 1

=
n+ 1

n

lnn+ 1
n

→ n

lnn
→ ∞

The series diverges
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Telescoping Series

1.
∞∑
n=1

(
1

n
− 1

n+ 1

)

SN =

(
1

1
− 1

2

)
+

(
1

2
− 1

3

)
+ · · ·+

(
1

N
− 1

N + 1

)
= 1− 1

N + 1

lim
N→∞

SN = 1

2.
∞∑
n=1

4

n(n+ 1)

4

n(n+ 1)
= 4

(
1

n
− 1

n+ 1

)
SN = 4

(
1− 1

N + 1

)
lim

N→∞
SN = 4

3.

∞∑
n=2

1

n2 − 1

1

n2 − 1
=

1

(n− 1)(n+ 1)
=

1

2

(
1

n− 1
− 1

n+ 1

)
SN =

1

2

(
1

1
+

1

2
− 1

N
− 1

N + 1

)
lim

N→∞
SN =

1

2

(
1 +

1

2

)
=

3

4

4.

∞∑
n=1

(
1

n+ 1
− 1

n+ 3

)

SN =

(
1

2
− 1

4

)
+

(
1

3
− 1

5

)
+ · · ·

=
1

2
+

1

3
− 1

N + 2
− 1

N + 3

lim
N→∞

SN =
5

6

5.

∞∑
n=1

ln

(
n+ 1

n

)
∞∑
n=1

ln

(
n+ 1

n

)
=

∞∑
n=1

(ln(n+ 1)− ln(n))

= ln(2)− ln(1) + ln(3)− ln(2) + · · ·+ ln(N + 1)− ln(N)

= ln(N + 1)

lim
N→∞

ln(N + 1) = ∞
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6.

∞∑
n=1

2

n(n+ 2)

2

n(n+ 2)
=

1

n
− 1

n+ 2

SN = 1 +
1

2
− 1

N + 1
− 1

N + 2

lim
N→∞

SN =
3

2

7.
∞∑
n=1

(
1

n2
− 1

(n+ 1)2

)

SN =
N∑

n=1

(
1

n2
− 1

(n+ 1)2

)
=

(
1

12
− 1

22

)
+

(
1

22
− 1

32

)
+

(
1

32
− 1

42

)
+ · · ·+

(
1

N2
− 1

(N + 1)2

)
= 1− 1

(N + 1)2

lim
N→∞

SN = 1

8.

∞∑
n=2

1

n(n− 1)

1

n(n− 1)
=

1

n− 1
− 1

n

SN = 1− 1

N
lim

N→∞
SN = 1

9.
∞∑
n=1

(√
n+ 1−

√
n
)

SN =
(√

2−
√
1
)
+
(√

3−
√
2
)
+ · · ·+

(√
N + 1−

√
N
)

=
√
N + 1− 1

lim
N→∞

SN = ∞

10.

∞∑
n=1

(
1

n
− 1

n+ 2

)

SN = 1 +
1

2
− 1

N + 1
− 1

N + 2

lim
N→∞

SN =
3

2
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Geometric Series

1.

∞∑
n=0

(
1

2

)n

a = 1, r =
1

2
, |r| < 1

a

1− r
=

1

1− 1
2

= 2

2.
∞∑
n=1

(
3

4

)n

a =

(
3

4

)1

=
3

4
, r =

3

4

a

1− r
=

3
4

1− 3
4

=
3
4
1
4

= 3

3.

∞∑
n=0

5

10n

a = 5, r =
1

10
5

1− 1
10

=
5
9
10

=
50

9

4.
∞∑
n=1

1

3n

a =
1

3
, r =

1

3
1
3

1− 1
3

=
1
3
2
3

=
1

2

5.
∞∑
n=1

(
2

3

)n

a =
2

3
, r =

2

3
2
3

1− 2
3

=
2
3
1
3

= 2

6.

∞∑
n=0

7 ·
(
2

3

)n

a = 7, r =
2

3
7

1− 2
3

=
7
1
3

= 21

7.

∞∑
n=1

1

2n+1

Let m = n+ 1 ⇒ n = m− 1, m ≥ 2

∞∑
n=1

1

2n+1
=

∞∑
m=2

1

2m

=

∞∑
k=0

1

2k
−
(

1

20
+

1

21

)
= 2− 1− 1

2
=

1

2

8.
∞∑
n=2

1

5n

∞∑
n=0

1

5n
−
(

1

50
+

1

51

)
=

1

1− 1
5

−
(
1 +

1

5

)
=

5

4
− 6

5
=

25− 24

20
=

1

20

9.

∞∑
n=0

4

3n+2

4

3n+2
=

4

9
·
(
1

3

)n

a =
4

9
, r =

1

3
4
9

1− 1
3

=
4
9
2
3

=
4

9
· 3
2
=

2

3

10.
∞∑
n=2

4n

7n−2

Rewriting, 4n

7n−2 = 4n

7n · 72 = 49 ·
(
4
7

)n
. Now,

a = 49 ·
(
4

7

)2

= 49 · 16
49

= 16, r =
4

7

a

1− r
=

16

1− 4
7

=
16
3
7

=
112

3
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p-Series

1.

∞∑
n=1

1

n

This is the harmonic series: p = 1

Since p ≤ 1, the series diverges

2.
∞∑
n=1

1

n2

p = 2 > 1 ⇒ The series converges

3.
∞∑
n=1

1√
n

=
∑ 1

n1/2
, p =

1

2
< 1

The series diverges

4.
∞∑
n=1

1

n3

p = 3 > 1 ⇒ The series converges

5.
∞∑
n=1

1

n0.9

p = 0.9 < 1 ⇒ The series diverges

6.

∞∑
n=1

1

n5/4

p =
5

4
> 1 ⇒ The series converges

7.

∞∑
n=1

1

n1.0001

p = 1.0001 > 1 ⇒ The series converges

8.
∞∑
n=1

1

n0.99

p = 0.99 < 1 ⇒ The series diverges

9.

∞∑
n=1

1

n4/3

p =
4

3
> 1 ⇒ The series converges

10.

∞∑
n=1

n2

√
n9

=
∑ n2

n9/2
=
∑ 1

n
5
2

p =
5

2
> 1 ⇒ The series converges
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Test for Divergence

1.

∞∑
n=1

n

n+ 1

lim
n→∞

n

n+ 1
= lim

n→∞

1

1 + 1
n

= 1

Series diverges

2.
∞∑
n=1

n2 + 3

2n2 + 1

lim
n→∞

n2 + 3

2n2 + 1
=

1

2

Series diverges

3.
∞∑
n=1

sinn

n

Since sinn oscillates, limit does not exist

Series diverges

4.
∞∑
n=1

cos

(
1

n

)

lim
n→∞

cos

(
1

n

)
= cos(0) = 1

Series diverges

5.

∞∑
n=1

5n− 4

n

5n− 4

n
= 5− 4

n

lim
n→∞

5n− 4

n
= 5

Series diverges

6.

∞∑
n=1

3n2

n2 + 1

lim
n→∞

3n2

n2 + 1
=

3

1
= 3

Series diverges

7.
∞∑
n=1

tan

(
1

n

)

lim
n→∞

tan

(
1

n

)
= tan(0) = 0

Test is inconclusive

8.

∞∑
n=1

1√
n

lim
n→∞

1√
n
= 0

Test is inconclusive

9.

∞∑
n=1

1

n2 + 1

lim
n→∞

1

n2 + 1
= 0

Test is inconclusive

10.
∞∑
n=1

1

n

lim
n→∞

1

n
= 0

Test is inconclusive
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Integral Test

1.

∞∑
n=2

1

n lnn

Let f(x) = 1
x lnx , which is continuous, positive,

and decreasing for x ≥ 2.

∫ ∞

2

1

x lnx
dx = ln(lnx)

∣∣∣∞
2

= ∞

The improper integral diverges, so the series di-
verges by the Integral Test.

2.
∞∑
n=2

1

n(lnn)2

Let f(x) = 1
x(lnx)2

, continuous, positive, and de-

creasing for x ≥ 2.

∫ ∞

2

1

x(lnx)2
dx =

(
− 1

lnx

) ∣∣∣∞
2

=
1

ln 2

The improper integral converges, so the series con-
verges by the Integral Test.

3.
∞∑
n=2

1

n(lnn)(ln lnn)

Let f(x) = 1
x(lnx)(ln lnx) , which is continuous, pos-

itive, and decreasing for x ≥ 3. We apply the
substitution

u = ln lnx ⇒ lnx = eu, x = ee
u
, dx = x lnx du

Then,∫
1

x(lnx)(ln lnx)
dx =

∫
1

u
· 1

x lnx
·x lnx du =

∫
1

u
du

∫ ∞

3

1

x(lnx)(ln lnx)
dx =

∫ ∞

ln ln 3

1

u
du = ∞

Therefore, the integral diverges, so the series di-
verges by the Integral Test.

4.

∞∑
n=2

1

n
√
lnn

Let f(x) = 1
x
√
lnx

, which is continuous, positive,

and decreasing for x ≥ 2.

Use the substitution u =
√
lnx, which leads to a

divergent integral.

∫ ∞

2

1

x
√
lnx

dx diverges

Therefore, the series diverges by the Integral Test.

5.
∞∑
n=1

1

np
(general case)

Let f(x) = 1
xp , which is continuous, positive, and

decreasing for all x ≥ 1 when p > 0. We apply the
Integral Test by evaluating the improper integral:

∫ ∞

1

1

xp
dx = lim

t→∞

∫ t

1
x−p dx

Case 1: p ̸= 1

∫ t

1
x−p dx =

[
x−p+1

−p+ 1

]t
1

=
t−p+1 − 1

−p+ 1

lim
t→∞

t−p+1 − 1

−p+ 1
=

{
Converges to 1

p−1 if p > 1

Diverges if p < 1

Case 2: p = 1

∫ t

1

1

x
dx = ln t ⇒ lim

t→∞
ln t = ∞

Conclusion: The integral converges if and only if
p > 1. Therefore, by the Integral Test,

∞∑
n=1

1

np
converges if and only if p > 1

6.

∞∑
n=2

√
lnn

n

Let f(x) =
√
lnx
x , continuous, positive, and de-

creasing for x ≥ 2.

Use the substitution u = lnx ⇒ du = 1
xdx, so:∫ ∞

2

√
lnx

x
dx =

∫ ∞

ln 2

√
u du = ∞

The integral diverges, so the series diverges by the
Integral Test.
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7.

∞∑
n=1

1

n2 + 1

Let f(x) = 1
x2+1

, which is continuous, positive,
and decreasing for x ≥ 1. Apply the Integral Test:

∫ ∞

1

1

x2 + 1
dx = tan−1(x)

∣∣∣∞
1

=
π

2
− π

4
=

π

4

Since the improper integral converges, the series
converges by the Integral Test.

8.
∞∑
n=1

2n

n4 + 25

Let f(x) = 2x
x4+25

, which is continuous, positive,
and decreasing for x ≥ 1. Make the substitution
u = x2, so du = 2x dx:

∫ ∞

1

2x

x4 + 25
dx =

∫ ∞

12

1

u2 + 25
du

=
1

5
tan−1

(u
5

) ∣∣∣∞
1

=
1

5

(
π

2
− tan−1

(
1

5

))

Since the improper integral converges, the series
converges by the Integral Test.

9.

∞∑
n=1

3n2

n6 + 36

Let f(x) = 3x2

x6+36
, which is continuous, positive,

and decreasing for x ≥ 1. Let u = x3, so
du = 3x2 dx:

∫ ∞

1

3x2

x6 + 36
dx =

∫ ∞

13

1

u2 + 36
du

=
1

6
tan−1

(u
6

) ∣∣∣∞
1

=
1

6

(
π

2
− tan−1

(
1

6

))
Since the improper integral converges, the series
converges by the Integral Test.

10.

∞∑
n=1

4n3

n8 + 64

Let f(x) = 4x3

x8+64
, which is continuous, positive,

and decreasing for x ≥ 1. Let u = x4, so
du = 4x3 dx:

∫ ∞

1

4x3

x8 + 64
dx =

∫ ∞

14

1

u2 + 64
du

=
1

8
tan−1

(u
8

) ∣∣∣∞
1

=
1

8

(
π

2
− tan−1

(
1

8

))
Since the improper integral converges, the series
converges by the Integral Test.
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Direct Comparison Test

1.

∞∑
n=1

1

n2 + 1

We compare to 1
n2 :

1

n2 + 1
<

1

n2

The series
∑ 1

n2 converges (p-series with p = 2 >
1). Therefore, the original series converges by the
Comparison Test.

2.

∞∑
n=1

2n

3n + 5

We compare to
(
2
3

)n
:

2n

3n + 5
<

2n

3n
=

(
2

3

)n

The geometric series converges (common ratio r =
2
3 < 1). Therefore, the original series converges by
the Comparison Test.

3.
∞∑
n=1

1√
n+ n

We compare to 1
2n :

1√
n+ n

>
1

2n

The series
∑ 1

2n = 1
2

∑ 1
n diverges (harmonic se-

ries). Therefore, the original series diverges by the
Comparison Test.

4.

∞∑
n=1

n

n3 + 1

We compare to 1
n2 :

n

n3 + 1
<

n

n3
=

1

n2

The series
∑ 1

n2 converges (p-series with p = 2 >
1). Therefore, the original series converges by the
Comparison Test.

5.

∞∑
n=1

3n2 + 2

n4 + n2 + 1

We compare to 4
n2 :

3n2 + 2

n4 + n2 + 1
<

4n2

n4
=

4

n2

The series
∑ 1

n2 converges. Therefore, the original
series converges by the Comparison Test.

6.

∞∑
n=1

2n

4n + n

We compare to
(
1
2

)n
:

2n

4n + n
<

2n

4n
=

(
1

2

)n

The geometric series converges. Therefore, the
original series converges by the Comparison Test.

7.

∞∑
n=1

n

n2 + 2

We compare to 1
2n :

n

n2 + 2
>

n

2n2
=

1

2n

The series
∑ 1

n diverges. Therefore, the original
series diverges by the Comparison Test.

8.
∞∑
n=1

5n

3n + 2n

We compare to
(
5
3

)n
:

5n

3n + 2n
>

5n

2 · 3n
=

1

2

(
5

3

)n

The geometric series diverges (r = 5
3 > 1). There-

fore, the original series diverges by the Comparison
Test.

9.

∞∑
n=1

1 + sin2
(
1
n

)
n

We compare to 1
n :

1

n
<

1 + sin2
(
1
n

)
n

The series
∑ 1

n diverges. Therefore, the original
series diverges by the Comparison Test.

10.
∞∑
n=1

n!

nn

For n ≥ 4, we have:

n!

nn
=

n

n
· n− 1

n
· n− 2

n
· · · 3

n
· 2
n
· 1
n

≤ 1 · 1 · 1 · · · 1 · 2

n2

=
2

n2

The series
∑ 2

n2 converges. Therefore, the original
series converges by the Comparison Test.
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Limit Comparison Test

1.

∞∑
n=1

n2 + 3n

n3 − 4

Let bn = 1
n . Then,

lim
n→∞

n2+3n
n3−4
1
n

= lim
n→∞

n3 + 3n2

n3 − 4
= 1

Since
∑

bn =
∑ 1

n diverges and the limit is posi-
tive and finite, the original series diverges by the
Limit Comparison Test.

2.
∞∑
n=1

n2

n4 − 1

Let bn = 1
n2 . Then,

lim
n→∞

n2

n4−1
1
n2

= lim
n→∞

n4

n4 − 1
= 1

Since
∑

bn =
∑ 1

n2 converges, the original series
converges by the Limit Comparison Test.

3.

∞∑
n=1

√
n+ 1

n2 + 5

Let bn = 1
n3/2 . Then,

lim
n→∞

√
n+1

n2+5
1

n3/2

= lim
n→∞

n3/2(
√
n+ 1)

n2 + 5
= lim

n→∞

n2 + n3/2

n2 + 5
= 1

Since
∑

bn =
∑ 1

n3/2 converges, the original series
converges by the Limit Comparison Test.

4.
∞∑
n=1

1

n+
√
n

Let bn = 1
n . Then,

lim
n→∞

1
n+

√
n

1
n

= lim
n→∞

n

n+
√
n
= 1

Since
∑

bn =
∑ 1

n diverges, the original series di-
verges by the Limit Comparison Test.

5.

∞∑
n=1

1
√
n+

√
n+ 1

Let bn = 1√
n
. Then,

lim
n→∞

1√
n+

√
n+1

1√
n

= lim
n→∞

√
n

√
n+

√
n+ 1

= lim
n→∞

1

1 +
√

1 + 1
n

=
1

1 + 1
=

1

2

Since
∑

bn =
∑ 1√

n
diverges (p-series with p =

1
2 < 1), the original series diverges by the Limit
Comparison Test.

6.

∞∑
n=1

1√
n4 + 3n

Let bn = 1
n2 . Then,

lim
n→∞

1√
n4+3n
1
n2

= lim
n→∞

n2

√
n4 + 3n

= 1

Since
∑

bn =
∑ 1

n2 converges, the original series
converges by the Limit Comparison Test.

7.

∞∑
n=1

3n + 2n

4n + 1

Let bn =
(
3
4

)n
. Then,

lim
n→∞

3n+2n

4n+1(
3
4

)n = lim
n→∞

3n + 2n

4n + 1
· 4

n

3n

= lim
n→∞

3n + 2n

3n
· 4n

4n + 1

= lim
n→∞

(
1 +

(
2

3

)n)
·

(
1

1 + 1
4n

)
= 1

Since
∑

bn =
∑(

3
4

)n
is a convergent geometric

series, the original series converges by the Limit
Comparison Test.

8.

∞∑
n=1

5

n2 + (−1)n

Let bn = 1
n2 . Then,

lim
n→∞

5
n2+(−1)n

1
n2

= lim
n→∞

5n2

n2 + (−1)n
= 5

Since
∑

bn =
∑ 1

n2 converges, the original series
converges by the Limit Comparison Test.

29



9.

∞∑
n=1

4

n2 + tan−1(n)

Let bn = 1
n2 . Then,

lim
n→∞

4
n2+tan−1(n)

1
n2

= lim
n→∞

4n2

n2 + tan−1(n)
= 4

Since
∑

bn =
∑ 1

n2 converges, the original series
converges by the Limit Comparison Test.

10.

∞∑
n=1

5

n2 + (−1)n

Let bn = 1
n2 . Then,

lim
n→∞

5
n2+(−1)n

1
n2

= lim
n→∞

5n2

n2 + (−1)n
= 5

Since
∑

bn =
∑ 1

n2 converges, the original series
converges by the Limit Comparison Test.
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Alternating Series Test

1.

∞∑
n=1

(−1)n

n

Let bn = 1
n . Then:

• bn > 0, decreasing

• lim
n→∞

bn = 0

The series converges by the Alternating Series
Test.

2.
∞∑
n=1

(−1)n+1

n2

Let bn = 1
n2 . Then:

• bn > 0, decreasing

• lim
n→∞

bn = 0

The series converges by the Alternating Series
Test.

3.
∞∑
n=1

(−1)n√
n

Let bn = 1√
n
. Then:

• bn > 0, decreasing

• lim
n→∞

bn = 0

The series converges by the Alternating Series
Test.

4.

∞∑
n=1

(−1)n

ln(n+ 1)

Let bn = 1
ln(n+1) . Then:

• bn > 0, decreasing

• lim
n→∞

bn = 0

The series converges by the Alternating Series
Test.

5.

∞∑
n=1

(−1)nn

n+ 1

Let bn = n
n+1 . Then:

• lim
n→∞

bn = 1 ̸= 0

The Alternating Series Test does not apply. The
series diverges by the Test for Divergence.

6.

∞∑
n=1

(−1)n

n+ (−1)n

Let bn = 1
n+(−1)n . Then:

• bn is not monotonic (alternates between even
and odd terms)

The Alternating Series Test does not apply.

7.

∞∑
n=1

(−1)n

n1/3

Let bn = 1
n1/3 . Then:

• bn > 0, decreasing

• lim
n→∞

bn = 0

The series converges by the Alternating Series
Test.

8.

∞∑
n=1

(−1)n

n2 + lnn

Let bn = 1
n2+lnn

. Then:

• bn > 0, decreasing for n ≥ 2

• lim
n→∞

bn = 0

The series converges by the Alternating Series
Test.

9.
∞∑
n=1

(−1)n · sin(1/n)
n

Let bn = sin(1/n)
n . Then:

• bn > 0

• lim
n→∞

bn = 0

• To show bn is decreasing for n ≥ 1, define
f(x) = sin(1/x)

x . Then

f ′(x) = −cos(1/x)

x3
− sin(1/x)

x2
< 0 for x ≥ 1,

so bn = f(n) is decreasing.

The series converges by the Alternating Series
Test.

10.

∞∑
n=1

(−1)n · 1

n0.9

Let bn = 1
n0.9 . Then:

• bn > 0, decreasing

• lim
n→∞

bn = 0

The series converges by the Alternating Series
Test.
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Absolute Convergence

1.

∞∑
n=1

(−1)n

n

This is the alternating harmonic series. Since:

lim
n→∞

1

n
= 0, and

1

n
is decreasing,

it converges by the Alternating Series Test. But∑ 1
n diverges, so it does not converge absolutely.

Conclusion: Converges conditionally.

2.
∞∑
n=1

(−1)n

n2

The series passes the Alternating Series Test. Also,∣∣∣∣(−1)n

n2

∣∣∣∣ = 1

n2
, and

∑ 1

n2
converges.

Conclusion: Converges absolutely.

3.
∞∑
n=1

(−1)n√
n

This is an alternating series with decreasing terms
and limit zero, so it converges conditionally. How-
ever, ∑ 1√

n
diverges.

Conclusion: Converges conditionally.

4.

∞∑
n=1

(−1)n lnn

n

For n ≥ 2, the terms lnn
n are positive, decreasing,

and approach 0. So the series converges by the
Alternating Series Test. But∑ lnn

n
diverges.

Conclusion: Converges conditionally.

5.

∞∑
n=1

sin(n2 + 1)

n3

Since | sin(n2 + 1)| ≤ 1, we have∣∣∣∣sin(n2 + 1)

n3

∣∣∣∣ ≤ 1

n3
,

and
∑ 1

n3 converges.

Conclusion: Converges absolutely.

6.

∞∑
n=1

(−1)n

(n+ 1) ln(n+ 1)

Let bn = 1
(n+1) ln(n+1) . Then bn is positive, de-

creasing, and lim bn = 0, so the alternating series
converges. To test for absolute convergence, con-
sider∑ 1

(n+ 1) ln(n+ 1)
∼
∑ 1

n lnn
, which diverges.

Conclusion: Converges conditionally.

7.
∞∑
n=1

(−1)n

n!

Let an = (−1)n

n! . Since
∑ 1

n! converges (rapid de-
cay), the series converges absolutely.

Conclusion: Converges absolutely.

8.
∞∑
n=1

cos(n)

n3/2

Since | cos(n)| ≤ 1, we have∣∣∣∣cos(n)n3/2

∣∣∣∣ ≤ 1

n3/2
,

and
∑ 1

n3/2 converges.

Conclusion: Converges absolutely.

9.
∞∑
n=2

(−1)n

n(lnn)2

Let bn = 1
n(lnn)2

. Then bn is positive, decreasing,

and tends to 0. The series converges by the Al-
ternating Series Test. For absolute convergence,
apply the Integral Test:∫ ∞

2

1

x(lnx)2
dx < ∞.

Conclusion: Converges absolutely.

10.
∞∑
n=1

sin(n)

n2

Since | sin(n)| ≤ 1, we have∣∣∣∣sin(n)n2

∣∣∣∣ ≤ 1

n2
,

and
∑ 1

n2 converges.

Conclusion: Converges absolutely.
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Ratio Test

1.

∞∑
n=1

5n

n2

Let an = 5n

n2 . Then

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

5n+1

(n+ 1)2
· n

2

5n

= 5 · lim
n→∞

(
n

n+ 1

)2

= 5.

Since the limit is greater than 1, the series diverges.

2.
∞∑
n=1

n2

2n

Let an = n2

2n . Then

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

(n+ 1)2

2n+1
· 2

n

n2

=
1

2
· lim
n→∞

(
n+ 1

n

)2

=
1

2
.

The series converges absolutely.

3.

∞∑
n=1

2n

nn

Let an = 2n

nn . Then

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

2n+1

(n+ 1)n+1
· n

n

2n

= 2 · lim
n→∞

(
n

n+ 1

)n

· 1

n+ 1
= 0.

The series converges absolutely.

4.
∞∑
n=1

2n

n!

Let an = 2n

n! . Then

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

2n+1

(n+ 1)!
· n!
2n

=
2

n+ 1
→ 0.

The series converges absolutely.

5.
∞∑
n=1

n!

3n

Let an = n!
3n . Then

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

(n+ 1)!

3n+1
· 3

n

n!

= lim
n→∞

n+ 1

3
= ∞.

The series diverges.

6.

∞∑
n=1

3n · n!
nn

Let an = 3nn!
nn . Then

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

3n+1(n+ 1)!

(n+ 1)n+1
· nn

3nn!

= 3 · lim
n→∞

(
n

n+ 1

)n

= 3 · 1
e
.

Since 3/e > 1, the series diverges.

7.
∞∑
n=1

n!

(2n)!

Let an = n!
(2n)! . Then

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

(n+ 1)!

(2n+ 2)!
· (2n)!

n!

= lim
n→∞

(n+ 1)

(2n+ 2)(2n+ 1)
= 0.

The series converges absolutely.

8.

∞∑
n=1

(2n)!

n! · nn

Let an = (2n)!
n!·nn . Then

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

(2n+ 2)!

(n+ 1)! · (n+ 1)n+1
· n! · n

n

(2n)!

= lim
n→∞

(2n+ 2)(2n+ 1)

(n+ 1) · (n+ 1)n+1
· nn

= 0.

The series converges absolutely.

9.

∞∑
n=1

(−1)n · n

2n

Let an =
∣∣(−1)n · n

2n

∣∣ = n
2n . Then

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

n+ 1

2n+1
· 2

n

n

=
1

2
· lim
n→∞

(
1 +

1

n

)
=

1

2
.

The series converges absolutely.
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10.

∞∑
n=1

(−1)n · n
2

n!

Let an =
∣∣∣(−1)n · n2

n!

∣∣∣ = n2

n! . Then

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

(n+ 1)2

(n+ 1)!
· n!
n2

= lim
n→∞

(n+ 1)2

n+ 1
· 1

n2

= lim
n→∞

n+ 1

n2
= 0.

The series converges absolutely.
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Remainder Estimates

1. Approximate

∞∑
n=1

(−1)n+1

n2
using the first 4 terms.

S4 = 1− 1

4
+

1

9
− 1

16
=

205

144
≈ 1.4236.

The remainder satisfies

|R4| ≤
∣∣∣∣ 125
∣∣∣∣ = 0.04.

2. Approximate

∞∑
n=1

(−1)n

n3 + 1
using the first 3 terms.

S3 = −1

2
+

1

9
− 1

28
= −103

252
≈ −0.4087.

The error satisfies

|R3| ≤
∣∣∣∣ 1

43 + 1

∣∣∣∣ = 1

65
≈ 0.0154.

3. How many terms are needed to approximate
∞∑
n=1

(−1)n+1

n5
to within 0.0001?

We want to solve for n so that bn+1 < 0.0001

1

(n+ 1)5
< 0.0001 ⇒ n+ 1 >

5
√
10000 ≈ 6.3.

Thus, n > 5.3, so 6 terms are needed.

4. Use the first 5 terms of
∞∑
n=1

(−1)n
ln(n+ 1)

n2
to ap-

proximate the sum.

S5 = − ln 2

12
+

ln 3

22
− ln 4

32
+

ln 5

42
− ln 6

52

≈ −0.6931 + 0.2747− 0.1540 + 0.0866− 0.0553

= −0.5411.

The error satisfies

|R5| ≤ b6 =
ln(7)

62
≈ 0.054053.

5. Determine the minimum number of terms needed

to estimate

∞∑
n=2

(−1)n

n lnn
with error less than 0.01.

We need to solve for n so that bn+1 < 0.01:

1

(n+ 1) ln(n+ 1)
< 0.01.

We can solve this by guessing and checking. In-
deed, 1

29 ln(29) > 0.01, but 1
30 ln(30) < 0.01. This

means that n should be 29 in order for bn+1 < 0.01.
Since n starts at 2, we use the first 28 terms.

6. Approximate

∞∑
n=1

1

n2 + 1
using the first 5 terms.

S5 =
5∑

n=1

1

n2 + 1
=

1

2
+

1

5
+

1

10
+

1

17
+

1

26

≈ 0.5 + 0.2 + 0.1 + 0.0588 + 0.0385 = 0.8973.

Use the remainder bound:∫ ∞

5

1

x2 + 1
dx = tan−1(x)

∣∣∞
5

=
π

2
− tan−1(5)

≈ 1.5708− 1.3734

= 0.1974.

So, error < 0.1974.

7. Estimate the remainder when approximating
∞∑
n=2

1

n lnn
from n = 2 to n = 10.

R10 ≤
∫ ∞

10

1

x lnx
dx.

Let u = lnx, du = 1
xdx:∫ ∞

10

1

x lnx
dx =

∫ ∞

ln 10

1

u
du = ∞.

So, the series diverges and the error is unbounded.

8. Estimate
∞∑
n=1

1

n3/2
using the first 8 terms.

S8 =

8∑
n=1

1

n3/2

≈ 1 + 0.3536 + 0.1925 + 0.125

+ 0.0894 + 0.0680 + 0.0535 + 0.0442

= 1.9262.

Estimate error:∫ ∞

8

1

x3/2
dx = −2x−1/2

∣∣∣∞
8

= 2 · 1√
8
≈ 0.7071.
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9. Find the smallest n such that

n∑
k=2

1

k(ln k)2
approx-

imates the full sum within 0.05.

We want: ∫ ∞

n

1

x(lnx)2
dx < 0.05.

Use substitution u = lnx, du = 1
xdx:∫ ∞

n

1

x(lnx)2
dx =

∫ ∞

lnn

1

u2
du =

1

lnn
.

Set 1
lnn < 0.05 ⇒ lnn > 20 ⇒ n > e20.

So, n = 485,165,195 terms are needed.

10. Approximate

∞∑
n=2

lnn

n3
using the first 6 terms.

S6 =

7∑
n=2

lnn

n3

≈ 0.0866 + 0.0459 + 0.0277 + 0.0181 + 0.0122 + 0.0086

= 0.1991.

Estimate error: ∫ ∞

7

lnx

x3
dx.

Use integration by parts:

u = lnx, dv = x−3dx, du =
1

x
dx, v = − 1

2x2∫
lnx

x3
dx = − lnx

2x2
+

∫
1

2x3
dx = − lnx

2x2
− 1

4x2
.

Evaluating from 7 to ∞:

− lnx

2x2
− 1

4x2

∣∣∣∣∞
7

= 0 +
ln 7

2 · 49
+

1

4 · 49

≈ 1.9459

98
+

1

196
≈ 0.0199 + 0.0051

= 0.025.

So, the error is less than 0.025.
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Taylor Polynomials

1. f(x) = x2ex, a = 0

ex = 1 + x+
x2

2!
+

x3

3!
+ · · ·

x2ex = x2 + x3 +
x4

2
+

x5

6
+ · · ·

2. f(x) =
1

1 + x2
, a = 1

Let u = x− 1, then x = 1 + u. Expand f(1 + u):

f(1 + u) =
1

1 + (1 + u)2
=

1

2 + 2u+ u2

Use polynomial division or binomial expansion to
find:

f(x) =
1

2
− u

2
+

u2

4
− u3

4
+ · · ·

=
1

2
− 1

2
(x− 1) +

1

4
(x− 1)2 − 1

4
(x− 1)3 + · · ·

3. f(x) = 4
√
x, a = 16

Let u = x − 16, then f(x) = (16 + u)1/4. Use
binomial expansion:

f(x) = 161/4
(
1 +

u

16

)1/4
= 2+

1

32
(x−16)− 3

2048
(x−16)2+

21

131072
(x−16)3+· · ·

4. f(x) = cos(x2), a = 0

cos(x2) = 1− x4

2!
+

x8

4!
− x12

6!
+ · · ·

5. f(x) = sin(2x), a =
π

4

Let u = x− π
4 , then

f(x) = sin
(
2 ·
(π
4
+ u
))

= sin
(π
2
+ 2u

)
= cos(2u)

= 1− (2u)2

2!
+

(2u)4

4!
− (2u)6

6!
+ · · ·

= 1− 2(x− π

4
)2 +

2

3
(x− π

4
)4 − 4

45
(x− π

4
)6 + · · ·

6. f(x) = ln(1 + 2x), a = 0

ln(1 + 2x) = 2x− (2x)2

2
+

(2x)3

3
− (2x)4

4
+ · · ·

= 2x− 2x2 +
8x3

3
− 4x4 + · · ·

7. f(x) = tan−1(x), a = 0

tan−1(x) = x− x3

3
+

x5

5
− x7

7
+ · · ·

8. f(x) =
x

1− x
, a = 0

x

1− x
= x+ x2 + x3 + x4 + · · ·

9. f(x) = ex
2
, a = 0

ex
2
= 1 + x2 +

x4

2!
+

x6

3!
+ · · ·

10. f(x) =
1√
1− x

, a = 0

(1− x)−1/2 = 1 +
1

2
x+

3

8
x2 +

5

16
x3 + · · ·
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Mixed Series Practice

1. We have:

lim
n→∞

√
n2 + cosn

n
= lim

n→∞

√
1 +

cosn

n2

=
√
1 + 0 = 1.

2. Let xn =
(
1− 1

2n

)3n
. Then:

xn =

[(
1− 1

2n

)2n
]3/2

→
(
e−1
)3/2

= e−3/2.

3. We examine the sequence of partial sums:

lim
n→∞

Sn = lim
n→∞

n2

ln(n+ 1) + 3n

= lim
n→∞

n

3 + ln(n+1)
n

= ∞.

Since the partial sums diverge, the series diverges.

4. We compute the limit of the partial sums:

lim
n→∞

Sn = lim
n→∞

4n2 + 1

2n2 + 5n+ 1
=

4

2
= 2.

Therefore, the series converges, and

∞∑
n=1

an = lim
n→∞

Sn = 2.

5. Using linearity of infinite series:∑
(2an − 3bn) = 2

∑
an − 3

∑
bn

= 2(5)− 3(4) = 10− 12 = −2.

6. This is a geometric series with first term

a =
6

42
=

6

16
=

3

8
, r =

1

4
.

The sum is:

∞∑
n=2

6

4n
=

a

1− r
=

3/8

1− 1/4
=

3/8

3/4
=

1

2
.

7. As n → ∞,

n4 + 3

n(n+ 1)2
∼ n4

n · n2
= n.

Since n4+3
n(n+1)2

∼ n, the terms do not tend to zero.

Therefore, the series diverges by the Test for Di-
vergence.

8. Compare with
∑

bn =
∑(

4
5

)n
:

lim
n→∞

4n

5n
· 5

n − 1

4n
= lim

n→∞
1− 1

5n
= 1.

Since
∑(

4
5

)n
is a convergent geometric series, the

given series converges by the Limit Comparison
Test.

9. We have

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

(n+ 1)2

2n+1
· 2

n

n2

=
1

2
· lim
n→∞

(
n+ 1

n

)2

=
1

2
.

Since the limit is less than 1, the series converges
absolutely.

10. Let an = cn

n . Then:

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

cn+1

n+ 1
· n

cn
= c · lim

n→∞

n

n+ 1
= c.

By the Ratio Test:

• If c < 1, the limit is less than 1, so the series
converges.

• If c > 1, the limit is greater than 1, so the
series diverges.

• If c = ±1, the limit is 1, so the Ratio Test is
inconclusive.

11. We compare with bn = 2n
n3−1

∼ 2n
n3 = 2

n2 .

For large n, cosn is bounded and negligible. So:

2n

n3 + cosn
<

2n

n3 − 1
∼ 2

n2
.

Since
∑ 2

n2 converges, the original series converges
by the Comparison Test.

12. Since | sin(n3)| ≤ 1, we have∣∣∣∣sin(n3)

n3 + 1

∣∣∣∣ ≤ 1

n3 + 1
<

1

n3
.

Since
∑ 1

n3 converges, the series converges abso-
lutely.
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13. Let

an =
(−1)n

n2 − 4
, bn =

1

n2
.

Then

lim
n→∞

∣∣∣∣anbn
∣∣∣∣ = lim

n→∞

1

n2 − 4
· n2 = lim

n→∞

n2

n2 − 4
= 1.

Since
∑

bn =
∑ 1

n2 converges, the series
∑

|an|
also converges by the Limit Comparison Test.

Therefore, the series converges absolutely.

14. The remainder satisfies:

|R4| ≤
∣∣∣∣ 153
∣∣∣∣ = 1

125
= 0.008.

15. Let f(x) = 1
x(lnx)2

. For x ≥ 2, the function is con-

tinuous, positive, and decreasing, so the Integral
Test applies: ∫ ∞

2

1

x(lnx)2
dx.

Substitute u = lnx, so du = 1
xdx. Then:∫ ∞

2

1

x(lnx)2
dx =

∫ ∞

ln 2

1

u2
du =

[
−1

u

]∞
ln 2

=
1

ln 2
.

Since the integral converges, the series converges
by the Integral Test.

To estimate the error after the first 5 terms (n = 2
through 6), we use the remainder estimate:

R6 ≤
∫ ∞

6

1

x(lnx)2
dx =

[
− 1

lnx

]∞
6

=
1

ln 6
.

Thus,

R6 ≤
1

ln 6
≈ 1

1.7918
≈ 0.5583.

The series converges, and the error in approximat-
ing the sum using the first 5 terms is at most
1

ln 6 ≈ 0.5583.
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