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The Story of Infinite Series

We begin with a sequence of numbers a1, as, as, ... and ask a natural question: What happens if we add them all
together? This leads us to the concept of an infinite series, written as

Y an=a1+aytaz+-.
Can We Find the Exact Sum?
In special cases, we can compute the exact value of the infinite series:
e Telescoping Series: If many terms cancel out when we write the partial sums, we have a telescoping series.
CEE)
n n+1l)

We compute the partial sum S,,, observe cancellation, and take the limit as n — oo.

For example:

e Geometric Series: For a geometric series of the form Y ar™"~!, the sum is given by

> a
Zarn_l = when |r] < 1.
n=1

1—7’
In these cases, we not only know that the series converges—we know exactly what it converges to.

Usually, We Can’t Find the Sum Exactly

Most infinite series are not so convenient. In general, we can’t compute the sum directly, so we shift our focus to
a different question: Does the series converge or diverge?

Step 1: Positive-Term Series

We begin with series whose terms are all positive. Several tests help us determine whether such a series converges:

e Test for Divergence: If lim,_, a, # 0, then the series diverges. In fact, this test applies to any series,
even if the terms are not all positive!

e Integral Test: If a,, = f(n) where f is positive, continuous, and decreasing, then
o
Z a, converges & / f(z) dx converges.
1

e Direct Comparison Test: Compare a, to a known benchmark series b,,.

— If 0 <a, <b, and > _ b, converges, then »_ a,, also converges.
— If 0 < b, <a, and > b, diverges, then > a, also diverges.

Benchmark series are often geometric series or p-series, since their convergence behavior is well understood.

e Limit Comparison Test: If a,,b, > 0 and

. a .
lim — =c¢ with0 < ¢ < oo,
n—oo n

then either both series converge or both diverge.



Step 2: Alternating Series and Mixed Signs

Series are not required to have only positive terms. In fact, many important series include both positive and
negative terms. We begin with the especially nice case of alternating series, where the signs alternate in a
regular pattern. If the terms alternate and decrease to zero, we can apply the:

e Alternating Series Test: For a series of the form Y (—1)"*!b, with b, > 0, if
bpt1 < b, and lim b, =0,
n—oo
then the series converges.
When a series has both positive and negative terms, we test for:

e Absolute Convergence: If > |a,| converges, then > a, converges absolutely (and hence converges).

e Conditional Convergence: If ) a, converges but > |a,| diverges, then the series converges conditionally.
A powerful tool in these cases is the:
e Ratio Test: Let

An+41
Qp

L= lim

n—oo

Then:

— If L < 1, the series converges absolutely.
— If L > 1 or L = oo, the series diverges.

— If L =1, the test is inconclusive.

Estimating the Sum: Remainder Estimates

Even when we can’t find the exact sum, we might want to estimate how close our partial sum S, is to the true
value.

e Alternating Series Remainder:
[Ry| =[S — Sp| < bnpa

The error is no larger than the next term.
e Integral Test Remainder:

/n:f(x)d;r<Rn < /noof(:c)da:

This provides upper and lower bounds for the error when using the integral test.

In Summary

e Some series can be summed exactly (e.g., telescoping, geometric).
e For most series, we focus on convergence rather than the exact value.

Positive-term series are the starting point, with several comparison-based tests.

Alternating series are easier to manage due to cancellation.

Absolute convergence guarantees convergence even for mixed-sign series.

e Remainder estimates help quantify how close a partial sum is to the true sum.



Summary of Series Types

Series Type General Form

Convergence Behavior

Telescoping Series Terms cancel in successive pairs, e.g.,

2 (5= w1

Geometric Series S art
p-Series > nip, where p > 0
Alternating Series S (=1)"by or Z(—l)"+lbn, bn >0

Partial sums simplify to a finite number of terms; con-
vergence depends on the limit of the remaining terms.
Often converges due to cancellation.

a
—r-

Converges if |r| < 1to 1 Diverges if |r| > 1.
Converges if p > 1. Diverges if 0 < p < 1.

Converges if by, decreases and lim b, = 0. May converge
conditionally or absolutely.

Summary of Convergence Tests

Test Applies To Conclusion

Test for Divergence Any series Y an If limy,—00 an, # 0, then the series diverges. If the limit
is 0, the test is inconclusive.

Integral Test Series with positive, decreasing f(n) = an  If floo f(x)dz converges, so does Y an. If the integral
diverges, so does the series.

Direct Comparison Test Positive-term series > an, Y bn If0 < an < by and Y, by converges, then > an converges.
If ap > by > 0 and Y by, diverges, then > an diverges.

Limit Comparison Test Positive-term series > an, Y bn If limp— oo ‘Z—: = ¢ with 0 < ¢ < oo, then both series
converge or both diverge.

Alternating Series Test Alternating series Y (—1)"byp with by, >0  If by is decreasing and limp 00 by = 0, then the series
converges.

Absolute Convergence Any series Y an If > |an| converges, then Y an converges absolutely (and
hence converges).

Ratio Test Any series Y an Compute L = limp—soo |a;“ |: if L < 1, series converges

n

absolutely; if L > 1 or L = oo, series diverges; if L = 1,
test is inconclusive.

Summary of Remainder Estimates

Test Remainder Estimate Interpretation

Alternating Series Test Remainder |Rn| = 1S — Sn| < bpt1 For an alternating series satisfying the Alter-
nating Series Test, the error in approximating
the sum by the nth partial sum is at most
the absolute value of the next term. Error de-
creases as n increases.

Integral Test Remainder f:il f(x)dz < Rn < [° f(z)d For a positive, decreasing, continuous function

f(n) = an, the true remainder lies between
two improper integrals. Useful for estimating
or bounding the error in partial sums.




Sequences

Let a, be a sequence. To evaluate lim a,, follow these steps:
n—o0

e Step 1: Try direct substitution.

1 5n+2 _n? TN
—Ifa, = 5,#13,71;1—“, try plugging in n — oo.

— Use leading-term analysis for rational expressions.

Step 2: Simplify algebraically if needed.

— Factor, divide numerator/denominator by highest power of n, or simplify complex expressions.

Step 3: Use known limit rules.

1 — lim {/a =1 for any a > 0
—T}Ln;oﬁ—Oforanyp>O ey oo Y
1 n
TR 1 1+-) =
Jim r =0if|r| <1 ng&( +n> €

Step 4: Apply L’Hopital’s Rule (only for continuous functions).

— Define f(z) from ay, take lim,_,~ f(x) if it’s indeterminate.

— Use only when a,, is expressible as a continuous function of x.

Step 5: Use squeeze theorem if appropriate.

— Useful for trigonometric sequences or oscillating behavior.
sinn

— Example: lim =0

n—oo N

Step 6: Use logarithms for exponential powers.

— For a, = n*'", a, = (1 + %)n, take In, find the limit, then exponentiate.

Step 7: Consider behavior of factorials.

— Use growth comparisons: n! > n" > r™ > nP
2

— Example: lim L 0
n—oo n!

Find the limit of each of the following sequences as n — co. Show your work and indicate which method you
are using (e.g., algebraic simplification, squeeze theorem, logarithmic substitution, etc.).

1. i 2n? +1 6. lim n'/™
T 3n2 _ 5 nroo

Tl2
5 im n® +3n 7. lim —
. nlyoo 4n2 —"_ 1 n—oo n!
5 i L 8. lim COS(Z) o
4T In(n+1) 9. lim ﬂ
nl—g)lo n n—so00\/n24+4—n
5. fim S0 10, i Vs

n—o00 n n—oo n



Series & Partial Sums

e Start with a sequence {a,}, where each a,, is a real number. The associated series is the sum
o0
Zan:a1+a2+a3+---

n=1

e Define the sequence {S,,}, where each partial sum is

n
S’n:a1+a2—|—-~-+an:Zak
k=1

e The series ) a, converges if the sequence of partial sums {S,} has a finite limit:

lim S, =5

n—o0

In this case, we write:
o
E ap =S
n=1

If lim S,, does not exist or is infinite, then the series diverges.
e To find the sum of a series from partial sums:

— If you'’re given a formula for S, compute

lim S,
n—oo

— That limit is the value of the series:

o0
E an = lim S,
n—oo

n=1

Each problem gives the partial sum S,, = Y ;_; ax. Find the value of the infinite series Y 7 ; a, by computing
limy, o0 Sy,

LS =31 6 5, = 02
" 2n2 + 5n + 1
2. Sn=n5f1 7. S”:ln(nf?f)Jrzn
3. S":m s. Sn:%
5‘5”_1_n22+1 10'5":7m



Telescoping Series

e Step 1: Identify the general term.
Examine the structure of the term a,. If it is a rational expression, it may telescope.

e Step 2: Decompose using partial fractions (if needed).
Rewrite a, as a difference of simpler terms:

111
nn+1) n n+1

e Step 3: Write out the first few terms.
Expand the partial sum Sy = a1 + a2 + - - - + an to observe a cancellation pattern.

e Step 4: Look for cancellation.
Most terms will cancel out in a telescoping series, leaving only a few from the beginning and end.

e Step 5: Take the limit of the partial sum.
After cancellation, evaluate the simplified expression:

lim Sy
N—oo

Step 6: Conclude the sum of the series.
The value of the infinite series is:

o0

anp = lim S
Z " N—o0 N
n=1

Evaluate the following infinite series by identifying the telescoping nature and computing the sum.

L3 () o % s
4 i(nilni?)) 9.2(\/7?1\/5)
() N



Geometric Series

e Step 1: Recognize or rewrite the series into geometric form.

A geometric series has the form:
oo oo
E ar™ or E ar™ 1.
n=0 n=1

Use algebraic manipulation if needed:

— Factor out constants.
— Reindex the starting value of n.

— Rewrite powers to match r” format.

e Step 2: Identify a and r.
Once in standard form, determine:

— a: the first term of the series.

— r: the common ratio between terms.

e Step 3: Check for convergence.
A geometric series converges if |r| < 1, and diverges otherwise.

e Step 4: Use the geometric series formula (if convergent).

> a
E ar” = T for |r| < 1.
n=0 -

For series starting at n = 1:

> ar > a

g ar = , g ar”t = )
1—r 1—r

n=1 n=1

Note: in each case, the formula is the first term of the series divided by 1 — r.

—t
NE
VR
N | =
N————
3

S
[~z

\]
7 N
[GVI N
N————
3

n=0 n=0
o n D
3 1
23 (3) W
n=1 n=1
S [
) 1
3 — 8
n=0 107 n=2 o”
[eS) [eS)
1 4
4 37 9. Z 3n+2
n=1 n=0
o n o
2 m
5> (3) 0.3 8
n=1 n=2



p-Series

Step 1: Identify the form of the series.

A p-series has the form:
oo

1
g —, where p > 0.
np

n=1

Step 2: Determine the value of p.
Carefully extract the exponent from the denominator and simplify if needed (e.g., square roots, frac-
tional exponents).

Step 3: Apply the convergence test for p-series.

— If p > 1, the series converges.

— If 0 < p <1, the series diverges.

Step 4: Recognize disguised p-series.
Some series may not look like # at first, but can be rewritten or compared to one:

11 . g . . _1
— Example: Jm = niz 1s a p-series with p = 3.

— Use comparison tests when the series is close to a p-series but not exactly in that form.

Determine whether each of the following series converges or diverges.

=1 =1
Ly - 6. 574
n=1 n=1
oo o0
1 1
2 Z ) 7. Z 1, 1.0001
n=1 n=1
o o
1 1
3 — 8. Z _
0.99
n=1 n n=1 n
o o
1 1
4 Z n3 9 Z ni/3
n=1 =1
oo o0
1 n2
5 209 10. ) W
n=1 n=1



Test For Divergence

e Step 1: Identify the general term a, of the series.
Start with a series of the form:
D>_an

e Step 2: Compute the limit of the general term.
Evaluate:

lim a,
n—oo

e Step 3: Apply the conclusion:

— If lim a, # 0 or the limit does not exist, then the series diverges.
n—oo

— If lim a, = 0, the test is inconclusive. The series may converge or diverge.
n—oo

e Important Notes:

— The Test for Divergence cannot prove convergence.

— This test works for all types of series (not just positive-term series).

Apply the Test for Divergence. If the limit is nonzero or does not exist, the series diverges. If the limit is zero,
the test is inconclusive.

> n o 3n2
! ;nJrl 6 ;HQ-Fl
oo 2 o0
n*+3
2 7. t —
> et Sven (1)
. sinn <1
3.~ 8> —~
n=1 n=1
4 icos l 9 i L
n n?2+1
n=1 n=1
o o
5 —4 1
d. 1 st
2. 0.2
n=1 n=1



Integral Test

e Step 1: Identify the series.
The series should be of the form:

Zan, where a, = f(n)

n=1
and f(z) is the corresponding continuous, positive, and decreasing function.
e Step 2: Check the conditions for the Integral Test.
The function f(z) must satisfy:
— f(x) is continuous for x > 1.
— f(x) is positive for x > 1.
— f(x) is decreasing for = > 1.

e Step 3: Set up the improper integral.
Compute the corresponding improper integral:

o0
| @
1
e Step 4: Evaluate the integral.
Use appropriate integration techniques (substitution, integration by parts, etc.) to compute the im-
proper integral.

e Step 5: Apply the results of the integral:

— If [° f(z) dz converges, then the series Y > a, converges.

— If [° f(z) dz diverges, then the series 7 | a, diverges.

Use the Integral Test to determine whether each series converges or diverges.

' nlnn ' n
n=2 n=1
oo o0
1 1
2. _ 7.
Z n(lnn)? Z n?+1
n= n=1
o o
1 2n
3. E _— 8. g T or
= n(lnn)(Inlnn) ‘= nt+25
o xD
1 3n2
4. g 9. g _
n—2 nvinn — 7’L6 + 36
oo o0
1 4n3
5. E ﬁ (general Case) 10 E m
n=1 n=1

10



Direct Comparison Test

e Step 1: Identify the general term a, of the series.
You are given a series Z an with a, > 0.

Step 2: Choose a known comparison series E bn.
Select a benchmark series with known convergence behavior—usually a geometric series or a p-series.

Step 3: Establish an inequality between a,, and b,.

— To show convergence, prove 0 < a,, < b, for all sufficiently large n, and > b,, converges.

— To show divergence, prove 0 < b,, < a,, for all sufficiently large n, and _ b, diverges.

Step 4: Conclude the behavior of >’ a,.

— If ap, < by, and ) b, converges, then > a, also converges.

— If ay, > by, and ) by, diverges, then ) a, also diverges.

Important Notes:

— The comparison must involve non-negative terms.

— The inequality must go in the correct direction depending on whether you’re trying to prove
convergence or divergence.

— If you cannot establish a valid inequality, try the Limit Comparison Test instead.

Use the Direct Comparison Test to determine whether each series converges or diverges by comparing it to a
known p-series or geometric series.

=1 = o
1. 6.
;n2+1 ;4"—}-71
o o
2m n
2. 7.
2 5t 2 i
o o0
1 5n
3. 8.
2 Jrin 2 i
A 5 9 1—|—sin2(l)
: Zn3+1 — n
n=1 n=1
o0 o
3n? 42 I
By 0y
mnttn +1 "

11



Limit

Comparison Test

Step 1: Identify the given series.
You are given a series of the form Z an, where a, > 0 for all n sufficiently large.

Step 2: Choose a comparison series »_ b,,.
Pick a series with known convergence behavior (typically a p-series or geometric series) that resembles
a, for large n.

Step 3: Compute the limit of the ratio.
Evaluate:

L= lim &
n—oo by,

Step 4: Apply the conclusion of the test.
If 0 < L < oo, then either both series converge or both diverge.

Important Notes:

— Use this test when a, and b, are positive for large n.

— The Limit Comparison Test often works when the Direct Comparison Test fails (e.g., when in-
equalities are hard to establish).

Use t

he Limit Comparison Test to determine whether each series converges or diverges.
2 o.]
3 1
—— 2 \/nT s 3n
n2 . 0 n + on
nt—1 ' — 4" +1
1 i 5
Vn+ 3. Z
n?+5 =2+ (=1)"
1 > 4
n++/n o Zn2+tan L(n)
n=1
1 > 5
10.

12




Alternating Series Test

e Step 1: Identify the alternating form.
The series must have alternating signs:

D (=1, or Y (=)™ by, with by > 0.

e Step 2: Check the two AST conditions.

— by, is decreasing: b,41 < b, for all n (or eventually).
— lim b, = 0.

n—o0

e Step 3: Conclude convergence.
If both conditions are met, then the series converges.

o Step 4: If AST fails, try another test.

— If b, is not decreasing or lim b, # 0, AST does not apply.

— Use the Test for Divergence if needed.

Determine whether each series converges or diverges. If the Alternating Series Test does not apply, state why.

n=1 2
E " S
e T
* ::1 hl(nl‘})'nl) 9. ni::l (=" :’Lm(l/”)
° :Ol (;1+)nln 10. i(_l)n %

13



Absolute Convergence

e Step 1: Start with the given series Z an, which may include negative or alternating terms.

e Step 2: Test for absolute convergence by analyzing Z |an]-

— Use any appropriate convergence test:

* p-series, geometric series, comparison, limit comparison, ratio, root, etc.

— If Z |a,| converges, then the original series converges absolutely.

e Step 3: If ) |a,| diverges, try the Alternating Series Test (if applicable).

— AST requires:
% by = |ap| >0
* by, is decreasing (eventually)
* lim b, =0
n—o0
— If AST applies, the series converges conditionally.
e Step 4: If neither test shows convergence, the series diverges.

— For example, if lim a, # 0, or neither >_ |a,| nor AST applies.
n—oo

e Summary:

— > a, converges absolutely if > |a,| converges.
— > a, converges conditionally if » a,, converges but ) |a,| diverges.

— > ay diverges if it fails both.

For each of the following series, determine whether it converges absolutely, converges conditionally, or diverges.

= (1) =
I'Z n 6';(n+1)ln(n+l)

n=1 n=1

= (=1)" cos(n)
3 ; NG 8 ; 7

= (=1)"lnn = (=1)"
4 nz:l( )n - nzgn((ln:z)Q

14




Ratio Test

Step 1: Identify the general term. Let a, be the general term of the series > ay,.

Step 2: Compute the ratio. Find the limit

An+1
an |

L= lim

n—oo

Step 3: Interpret the result.

— If L < 1, the series converges absolutely.
— If L > 1 or L = o0, the series diverges.

— If L =1, the test is inconclusive.

Ant1
Qn

Step 4: Use absolute values. Always apply the test to

‘ to determine absolute convergence.

If the test shows convergence, the original series converges (even if alternating).

Step 5: If inconclusive, try another test. Consider:

— Alternating Series Test (AST)

— Comparison / Limit Comparison Test

Determine whether each series converges absolutely, converges conditionally, or diverges using the Ratio Test.

>, 5 > 3" nl
1.;712 6. > —

n=1
2 — 7. -
n=1 n=1
nn ' n!-nn
n=1 n=1
o 0
2n n
4 = 9. > (-1) o
n=1 n=1
5 21" 10. Zl(—1) o
n= n=

15




Remainder Estimates

Alternating Series Remainder

e Applies to: An alternating series of the form
o

Z(—l)”“bm where:

n=1
— b, >0
— b, is decreasing
— lim b, =0
n—o0

¢ Remainder estimate: The error when ap-
proximating the sum by the first n terms satis-
fies:
[Ry| =[S — Sp| < bnpa
e Steps:

— Confirm the series meets the conditions of
the Alternating Series Test.

— Compute or estimate b,11 to bound the
€rror.

— Use this bound to describe how accurate
the partial sum .5, is.

Integral Test Remainder

e Applies to: A positive, decreasing, continu-
ous function f(n) where a,, = f(n), and > a,
is approximated using the Integral Test.

e Remainder estimate: If S, = >"}'_; a, then
the remainder R, = S — S,, satisfies:

A:f<x)d$<Rn < /:Of(x)dx

e Steps:

— Confirm that f(x) is positive, continuous,
and decreasing for z > n.

— Evaluate (or estimate) both bounds:

b f(z)dx

n+1

Upper bound:/ f(x)dx

Lower bound:

— Conclude that the true error lies between
the two.

J

For Problems 1-5, use the Alternating Series Remainder Theorem. For Problems 6-10, use the Integral Test

Remainder estimate. Show all reasoning.

Alternating Series Remainder

1 n+1
1. Approximate Z #

n=1
Estimate the error.

using the first 4 terms.

n
1 using the first 3 terms.

o0
) (—
2. Approximate
pp nz_:l 53

How accurate is your approximation?

3. Find how many terms are needed to approximate

e -1 n+1

E % to within 0.0001.
n

n=1

,In (n+1)

o0
4. Use the first 5 terms of Z(— to ap-

n=1
proximate the sum. Estimate the error.

5. Determine the minimum number of terms needed

—1"

oo
to estimate Z ( with error less than 0.01.
= nlnn

Integral Test Remainder

6. Approximate Z

Use the Integral Test to bound the error.

) using the first 5 terms.

7. Use the Integral Test to estimate the remainder

from n = 2 to

when approximating Z
nlnn

n = 10.
8. Estimate Z 3 /2 using the first 8 terms, and
bound the error using the Integral Test.
9. Find the smallest n such that the partial sum
z":; approximates the infinite series to
k(nk)z “PP

within 0.05.
Ilnn
10. Approximate E —- using the first 6 terms. Es-
n

n=2
timate how close your approximation is to the true

value.

16



Taylor Polynomials

1. Recall the Taylor polynomial formula:

" (n)
T(@) = (@) + f@)(e —a) + T a4 T e
2. Compute the derivatives of f(x):
— Find f®)(z) for k =0,1,2,...,n.
3. Evaluate each derivative at z = a:
fla), f(a), f"(a) " (a)

4. Substitute into the Taylor formula:

— Plug the values from step 3 into the formula from step 1.

t

. Simplify:

— Expand and combine like terms to write the polynomial in standard form.

Optional Checks
e Check the number of terms: Make sure you include the first n nonzero terms.

e Use known Taylor series:

— For functions like e*, sinx, cosz, In(1 + x), use known Maclaurin series if centered at a = 0.

Use the definition of a Taylor series to find the first four nonzero terms of the series for f(x) centered at the
given value of a.

1. f(z)=2%% a=0 6. f(z)=In(1+2z), a=0
1 7. _ -1 : 0
2. f(fz):m, a=1 f(l‘) tal; (CC) a
3. f(x)= ¥z, a=16 8 fla)=qg— a=0
4. f(z) = cos(z?), a=0 9. fz) =e", a=0
1
5. f(z) = sin(2x), a:% 10. f(x) = — a=0

17



Mixed Series Practice

For each problem below, determine convergence/divergence, evaluate limits or sums, or justify the requested
conclusion. Show clear reasoning.

1.

10.

11.

12.

13.

14.

15.

o0
. Determine whether the series Z
n=1

. Vn?4cosn
Evaluate lim ———.

n—o0 n

1 3n
. Evaluate lim (1 — ) .

n—00 2n

2

n
n
. Suppose S, = Z ap = ————————. Determine whether » >, a,, converges and, if so, to what value.
— In(n+ 1)+ 3n
- 4n? +1
. Suppose S, = Z ap = 55—+ Determine whether > o2 | an converges and, if so, to what value.
Pt 2n+bn+1

Y an=>5and Y by =4, find Y (2a, — 3by).

o0
6
. Find the sum of the geometric series: Z T

n=2

n*+3

———— converges. If it converges, find its sum.
n(n+1)2 vers ' VErses,

o0
Determine whether the series Z
n=2

n

" —1

converges.

2

n
. Let a,, = on Use the Ratio Test to determine whether » a,, converges.

X n
. . . . &
Use the Ratio Test to determine for which values of ¢ > 0 the series E — converges.
n

n=1

[e.e]
. . 2n
Determine whether the series g converges.
n=1

— n3 + cosn

. > sin(n?)
Determine whether E 51
n

n=1

converges absolutely, conditionally, or diverges.

X 1\n
Determine whether Z (=1) 1 converges absolutely, conditionally, or diverges.

2 _
n=3 n
= 1
Use the Alternating Series Remainder Theorem to estimate the error when approximating z:(—l)”—3 using
n
n=1

the first 4 terms.

o
Use the Integral Test to show that Z
n=2

——— converges. Estimate the error when approximating the series
nln(n)?

with the first 5 terms.

18



Solutions

Sequences
2
1. lLim M
n—oo 3n2 — 5§
2+% 2
= lim ”52 -
n—oo 3 — = 3
5 n? +3n
1+32 1
= lim ==
8.
. 1
5 e
1
= lim — =0
n—00 1/N
| 1
4 lim 2 ED
n—o00 n

Let f(z) = % Then:

@)= g o =0
9.
Therefore,
1 1
lim M -0
n—oo n
5. lim sin(n)
n— o0 n
Since —1 < sin(n) < 1 for all n, we have:
1 < sin(n) < 1
n n n 0
Taking the limit of all three expressions: '
lim sin(n) _0
n—oo n

6. lim n'/"
n—oo

Let a, = n'/". Take logarithms:

1
lnan—M—>02>an—e =1
n

Therefore,
lim n'/™ =1
n—oo
2
7. lim =
n—oo N

For n > 5, we have:

3
n!zn(n—l)(n—Q)Z%

19

Then:

0< L < =

2 n? 6
nl — n? n

. .6 .
Since lim — = 0, the squeeze theorem gives:
n—oo n

cos(n) +n _ n+ cos(n)

. -
n<+1 m/l—l—#

Then: o)
1+COSTL 1 0
1+ 25

sin(n)

im ——
n—oo \/n2 44 —n

sin(n) sin(n) - (Vn?+4+n)

nZ+4—n 4

Since sin(n) is bounded and vn? 4+ 4+n — oo, the
numerator oscillates without settling. The limit
does not exist.

2 .
AL + sin(n)
n—o00 n
Use bounds:
\/71 < /n? +sin(n n2 +
Then:

vn?2 -1 < \/n2+sin(n) < Vn2+1

n - n - n

T
:>\/1_12§ N —1—sm(n)§\/1_~_12
n n

n
Taking limits of both bounds gives:

lim n? + sin(n)

n—oo n

=1



Series & Partial Sums

1
1. §5,=3——
n
lim S, =3
n—oo
5n
2. 5, =
" n+1
5
= T —5
1+
on? +1
3.5, =+
n2+2n+1
2+ % 2
= 2”21 — —-=2
1+24+5L "1
4n?
4. S, =
241
4
= T — 4
e
2
5 S, =1— ———
" n?+1
2 —0 = limsS 1
1m =
n?+1 "

20

6. Sn

7.8, =

8. Sn

9. S,

10. S,

76n2+3n+2
22 45n+1
6+2+% 6
= o 5,1 *5=3
2+ 2+ 2
_ on
In(n+1) +2n
 In(n+1)
%4_2 0+2
~ n+4
n2+9
1+4 1
1+ %
_ 4n +In(n)
 3n+1
A4y
341 3
_ n?+1
nlnn+1
n—i—% n
— —— — 00

:lnn—i—% Inn

The series diverges



Telescoping Series

< /1 1
1. -

> (5 a31)

n=1

= 4
ZE:HFIE

n=1

o0

n=2

soL(L,
N=9\1 72 N N+1
1 1\ 3
li = (1+=) ==
S 2(+2> 1
o0
1 1
4 _
> (53
n=1
11 1 1
w=(3-1)+(375)*
10 1 1
2 3 N+2 N+3
5
li =2
E>nooSN 6

;ln <"Z 1> =3 (n(n+1) — In(n))

n=1

=In(2) —In(1) + In(3) = In(2) + - - + In(N + 1) — In(N)
=In(N +1)

lim In(N +1) =0
N—oo

21



9.

WE

(\/n+ — \/ﬁ)

S
Il
—_

<. /1 1
10 Z(n_n—l—Q)

n=1

2 11
nn+2) n n+2
1
Sy=1+-—
3
lim Sy ==
—00 2

(N +1)2
lim Sy =1
N—oo
111
nn—1) n—-1 n
1
lim Sy =1
N—oo
Sw=(v2-v1)+(V3-v2)+ -+ (VN+1-VN)
=vVN+1-1
i Sy =oc
1 1 1
SN=lt S TN T N1
. 3
fmoN =5

22



Geometric Series

= /1\" =1
LY <2> Y T
n=0 n=1

Let m=n+1=n=m-1, m>2

a=1, r=—=, |rl<1
a 1 =1 =1
1, -1 ° ZQnHZZQTn
2 n=1 m=2

o 4 k=0
PSS
3\' 3 3 2
a = _ — T = -
4 4’ 4
3 3 0
a 1 1 1
3 1 .
I—r 1-% 3 7122571
o
5
3. — .
=10 1 11
25z ta
1 n=0
a=2>, T_ﬁ B 1 . 1
5 5 50 11 5
1-5 39 _5 6_»-2u_ 1
4 5 20 20
<1
4~237 N
n=1 4
9.
1 1 7;)3n+2
a==, T=<
3’ 3
1 1
1312%25 4 4 [1\"
~3 3 a2 — 9 \3
> /2\" ot 1
5.3 (3) =5 "3
= 4 4
=t s _9_43_2
1 2
azg r:g -5 5 9 2 3
3’ 3
2 2
3 3 o0
2 1
1-3 3 10. ) 7
n=2
> 2“ n n n
6.27-(3) Rewriting, -1 = %7 - 72 =49 - ()". Now,
n=
2 49 17 19. 30 _ 16 4
J— — a = — frg o —_— = —_— =
a=7, r=g 7 49~ 7
7T o1 a 16 16 112
23— 1~ = 14— 3~ q
1-3 3 l=r 1-7 3

23



p-Series

[e.9]

1
LYy =

=1
2.7121712

n=1

Si-

1
4. Zﬁ
n=1

1
5. ZW
n=1

This is the harmonic series: p = 1

Since p < 1, the series diverges

p =2 > 1 = The series converges

B 1 1 )
—Zma P—§<

The series diverges

p =3 > 1 = The series converges

p = 0.9 < 1 = The series diverges

24

=1
6. >~
n=1

5
P=7 > 1 = The series converges

1
£ Z n,1-0001
n=1
p = 1.0001 > 1 = The series converges
oo
1
8. Z n0-99
n=1
p = 0.99 < 1 = The series diverges
[e.e]
1
9 D i
n=1

4
p= 3 > 1 = The series converges

10. Z -
n=1

n

ﬁ

2 1
=YX

)
p= 3 > 1 = The series converges



Test for Divergence

[e.9]

n
L Zn—i—l

. n . 1
lim = lim e
n—oon + 1 n%ool_f_ﬁ

Series diverges

o© 9
3
2_§ n+s
2n2 +1
n=1
n?+3 1
im —— = —
n=oo 2n2 + 1 2

Series diverges

. sinn
3. E
n

n=1

Since sinn oscillates, limit does not exist

Series diverges

Series diverges

lim =
n—00 n

Series diverges

i 3n? 3
S I |
Series diverges

) ( 1
lim tan

n—oo n

) = tan(0) = 0

Test is inconclusive

1
lim — =
e =0

Test is inconclusive

©
M8
:M
+ —_
—

n=1
. 1
nlggo n2+1 0
Test is inconclusive
=1
10. —
n=1 n

1
lim — =0
n—oo n

Test is inconclusive

25



Integral Test

[e.9]

1
L annn

n=2

Let f(x) = Wlw, which is continuous, positive,
and decreasing for x > 2.

© 1 00
/ dr =In(lnz)] =o0
9 xlnzx 2

The improper integral diverges, so the series di-
verges by the Integral Test.

53 1
- n(lnn)?

Let f(x) = m, continuous, positive, and de-
creasing for x > 2.

/w L[] ’w_ 1
o z(Inz)? T\ Tz e T2

The improper integral converges, so the series con-
verges by the Integral Test.

- 1
’ 7;::2 n(Inn)(Inlnn)

Let f(z) = m, which is continuous, pos-
itive, and decreasing for x > 3. We apply the
substitution

el

u=Inlnz = Ilnz=¢", z=¢, dr=zxzlhzdu

Then,

/1dx:/1- ! -mlnxdu:/ldu
z(lnz)(Inlnz) u xlnx u

o 1 oo
/ —  _dz = / l du = oo
3 z(lnz)(Inlnz) Inln3 U

Therefore, the integral diverges, so the series di-
verges by the Integral Test.

=1
71232” Inn

o 1 . . . e
Let f(z) = Ve which is continuous, positive,
and decreasing for = > 2.

Use the substitution v = v/Inx, which leads to a
divergent integral.

26

> 1
dx diverges
/2 zvVInzx &

Therefore, the series diverges by the Integral Test.

o0

1
. Z v (general case)

n=1

Let f(x) = mip, which is continuous, positive, and
decreasing for all x > 1 when p > 0. We apply the
Integral Test by evaluating the improper integral:

) 1 t
/ —dz = lim z Pdx
1

xP t—oo Jq

Case 1: p#1
t —p+1 7t el g
/ x Pdr = { v } =
1 -p+1];  -—p+l1

e {Converges to -1 ifp>1

p

lim ——
tooo —p+1 Diverges ifp<1

Case 2: p=1
b
/dwzlnt = limInt=o

Conclusion: The integral converges if and only if
p > 1. Therefore, by the Integral Test,

o0
1

E — converges if and only if p > 1
n

n=1

WE
3|5
3

n=2

Let f(x) = 1;“, continuous, positive, and de-
creasing for x > 2.

Use the substitution v = Inx = du = %dm, So:

/ lnxdx: Vudu = oo
2

x In2

The integral diverges, so the series diverges by the
Integral Test.



o0

1
B9

n=1

Let f(x) = x%ﬂ, which is continuous, positive,
and decreasing for z > 1. Apply the Integral Test:

1 IPUINES
m dr = tan (.’17) )

r

Since the improper integral converges, the series
converges by the Integral Test.

[e.9]

>3

n=1

Let f(x) = mfﬁ, which is continuous, positive,
and decreasing for x > 1. Make the substitution
u =22, so du = 2z du:

2n
nt 4+ 25

2
_ g
x4 4+ 25

r

[,
T = —du
12 U2+25

Since the improper integral converges, the series
converges by the Integral Test.

27

. 3n?
9. _
Z nb + 36
n=1
Let f(z) = :&LJ:{(S’ which is continuous, positive,
and decreasing for x > 1. Let u = x3, SO
du = 322 dz:
(e%¢] 3I2 [e’e] 1
——dz = —d
/1 26 136" /13 w?+ 36"

~gtan (5)[7

{R6)

6 \ 2
Since the improper integral converges, the series
converges by the Integral Test.

= 4n?
10. —_
Zn8+64
n=1
Let f(x) = xgif&p which is continuous, positive,
and decreasing for x > 1. Let u = 2% so
du = 423 da:
00 4.%3 00 1
———dr = —d
/1 5164 /14 w2+ 64"
T OIN
— “ta u
8 8/
17 tan—1 1
“slz A8

Since the improper integral converges, the series
converges by the Integral Test.



Direct Comparison Test

[e.9]

1
L Zn2+1

n=1

We compare to —3:
n

1
J— < J—
n?+1 n?
The series Y 7712 converges (p-series with p =2 >

1). Therefore, the original series converges by the
Comparison Test.

o0

on
3"+ 5
n=1

We compare to (%)n

2n 2 2\"
<—=|z
3n+5 3 (3>
The geometric series converges (common ratio r =

% < 1). Therefore, the original series converges by
the Comparison Test.

G |
3.
Z Vn+n
n=1
We compare to ﬁ:
1 1

>7
vn+n o 2n

The series > 5= = £ 3 1 diverges (harmonic se-
ries). Therefore, the original series diverges by the
Comparison Test.

o0

4. anil

n=1

We compare to —:
n

n n 1

- < — =
nd+1 nd  n?

The series ) - converges (p-series with p = 2 >

1). Therefore, the original series converges by the

Comparison Test.

3n? +2
nt+n?+1
n=1
We compare to n%:

3n2+2 an? 4

- =
nt4+n2+1 n n?

The series > % converges. Therefore, the original
series converges by the Comparison Test.

28

10.

o0 on
Z4n+n

n=1

We compare to (%)n

2" 2n \"
<—=|=z
an+n o 4n (2>
The geometric series converges. Therefore, the
original series converges by the Comparison Test.

)
' Zn2—|—2

n=1

1.
We compare to 5-:

n n 1

> =
n2+2" 2n2  2n

The series Z% diverges. Therefore, the original
series diverges by the Comparison Test.

(e}

5N

n=1
n.

We compare to (%) :

5" 5 _1(5\"
3n42n T 2.3 2\3
The geometric series diverges (r = 2 > 1). There-

fore, the original series diverges by the Comparison
Test.

i 1 + sin? (%)

n

n=1

1.
We compare to -

1 1 + sin? (%)

n n

The series Z% diverges. Therefore, the original
series diverges by the Comparison Test.

= nl

nn
n=1

For n > 4, we have:

n!

n
nn n
1

IA

The series > % converges. Therefore, the original
series converges by the Comparison Test.



Limit Comparison Test

1 Zn +3n

Let b, = % Then,

n2+3n
. po n3 + 3n?
lim 2L = gim 0
n—oo 4 nooo N3 —4

n

Since Y b, = > * diverges and the limit is posi-
tive and finite, the original series diverges by the
Limit Comparison Test.

n
2.
Z n4 -1
n=1
Let b, = 7712 Then,
= {
lim 2 — = lim — =1
n—00 o3 n—oo n% — 1

Since > b, = > # converges, the original series
converges by the Limit Comparison Test.

Let b, = 3/2 Then,

Vs _ o nREHl) L n? e
—_— im — = —_—

2 = 2 =1
7 n—00 n®+5 n—oco N4+ 5H

lim
n—oo

Since Y b, = > # converges, the original series
converges by the Limit Comparison Test.

=1
4.Zn+

n=1

B

Let b, = % Then,

. n-hf
1 —,}fgowf

Since Y b, = Z% diverges, the original series di-
verges by the Limit Comparison Test.

29

5Z\F+\/W

Let b, = %. Then,
1
lim ﬁ% vntl o \/ﬁ

n—00 7 n—00 \f ++v/n+1
1 1
= lim —

n—00 1+ l 1 + 1
n

Since Y b, = ) ﬁ diverges (p-series with p =

% < 1), the original series diverges by the Limit

Comparison Test.

> 1
' ; vnt 4+ 3n

Let b, = n% Then,

1
2
Viiien _ 1. oy

lim Y~—"— = lim

n—00 n% n—oo \/n4 + 3n

Since b, = Y -5 converges, the original series
converges by the Limit Comparison Test.

S 3n 4 9n
4+ 1

n=1

Let b, = (%)n Then,

= S U, UL
lim —=5 = lim ——— - —

.34 2n 4n
= lim .
n—oo 3" 4+ 1

li 1+ 2\ L 1
= lim = ) — | =

Since > b, = > (%)n is a convergent geometric
series, the original series converges by the Limit
Comparison Test.

o0

)
P ey

n=1
Let b, = n% Then,

= lim ————— =5

lim Al (21

5
D 5n?
nheo L

n

Since > b, = > # converges, the original series
converges by the Limit Comparison Test.



- 4
O nz::l n? + tan—!(n)

Let b, = . Then,

n

4
i n?+tan—1(n) i 4n?
m 7 = m oS
n—00 v n—oo n? + tan~1(n)

=4

Since Y b, = > - converges, the original series

converges by the Limit Comparison Test.

30

5

—Tyn 512
T U | L LU
n—00 = n—oo N _|_(_1)n

Since b, = > - converges, the original series
converges by the Limit Comparison Test.



Alternating Series Test

(o]
(="
1.
>
n=1
Let b, = % Then:

e b, > 0, decreasing

e lim b, =0
n—00

The series converges by the Alternating Series

Test.
o
-1 n+1
2 S S
n=1 n

Let b, = # Then:

e b, > 0, decreasing

e lim b, =0
n—00

The series converges by the Alternating Series

Test.
— (="
3. nzl NG

Let b, = ﬁ Then:

e b, > 0, decreasing

e lim b, =0
n—oo

The series converges by the Alternating Series

Test.
o0
(="
4. —
nZ::l In(n+1)
— 1 .
Let bn = m Then:

e b, > 0, decreasing

e lim b, =0
n—oo

The series converges by the Alternating Series
Test.

= (=1)"n
> Z(nﬁl

n=1

Let b, = nLH Then:

o limb,=1+#0
n—oo

The Alternating Series Test does not apply. The
series diverges by the Test for Divergence.

0o (_1)71
6. _—

1 .

Let bn = m Then:

31

10.

e b, is not monotonic (alternates between even
and odd terms)

The Alternating Series Test does not apply.

e b, > 0, decreasing

e lim b, =0
n—00

The series converges by the Alternating Series
Test.

i (="
' n?+1Inn

n=1
Let b, = ——+—. Then:

n2+lnn"

e b, > 0, decreasing for n > 2

e lim b,=0
n—oo

The series converges by the Alternating Series
Test.

o0

—1)" -sin(1/n
E:I( ) . (1/n)

Let b, = W Then:

e b, >0

e lim b, =0
n—oo

e To show b, is decreasing for n > 1, define
f(x) = sin(1/z) Then

z .

() = _0085613/3:) B sinilZ/x) <Oforz>1,

so by, = f(n) is decreasing.

The series converges by the Alternating Series
Test.

n=1

Let b, = nTl,g. Then:

e b, > 0, decreasing

e lim b, =0
n—oo

The series converges by the Alternating Series
Test.



Absolute Convergence

Ly
n=1

This is the alternating harmonic series. Since:

1
lim — =0, and — is decreasing,
n

n—oo N

it converges by the Alternating Series Test. But
> % diverges, so it does not converge absolutely.

Conclusion: Converges conditionally.

fe'e) 1)
=

n=1

The series passes the Alternating Series Test. Also,

‘<—1>n

n2

27

1
and E —5 converges.
n n

Conclusion: Converges absolutely.

o~ (1"

This is an alternating series with decreasing terms
and limit zero, so it converges conditionally. How-
ever,

ZL diverges
i TR

Conclusion: Converges conditionally.

o0

—1)"Inn
e

n=1
For n > 2, the terms IHT” are positive, decreasing,

and approach 0. So the series converges by the
Alternating Series Test. But

2.

Conclusion: Converges conditionally.

Inn .
—— diverges.
n

i sin(n? + 1)
. 3
n=1

Since |sin(n? 4+ 1)| < 1, we have

sin(n? 4 1)
n3

' 1

and > % converges.

Conclusion: Converges absolutely.

32

6.

10.

>

=

S (="
nz:l (n+1)In(n+1)

Let b, = m Then b, is positive, de-
creasing, and limb,, = 0, so the alternating series
converges. To test for absolute convergence, con-
sider

which diverges.

1 1
Z(n+1)1n(n+1) ~ 2

Conclusion: Converges conditionally.

00 1)

n=1

Let a, = # Since >° L converges (rapid de-

cay), the series converges absolutely.

Conclusion: Converges absolutely.

>, cos(n)

3/2
n=1 n

Since |cos(n)| < 1, we have

cos(n)

1
n3/2 = n3/2’

and > ﬁ converges.
Conclusion: Converges absolutely.

(=n"

— n(lnn)?

o0

Let b, = —L

n(lnn)?*
and tends to 0. The series converges by the Al-
ternating Series Test. For absolute convergence,

apply the Integral Test:

/Oold <
9 z(Inz)? s e

Conclusion: Converges absolutely.

i sin(n)
n2
n=1

Since [sin(n)| < 1, we have

Then b,, is positive, decreasing,

sin(n)| _ 1

n2

| <3

and ) & converges.

Conclusion: Converges absolutely.



Ratio Test

(o] o
5" 3" . nl
1. Z ﬁ 6. Z nn
n=1 n=1
Let a, = 2—2 Then Let a,, = 3:,?!. Then
5n+1 2
lim [P = fim 5 nn lim | &2t i 3" (n+1)! on"
n—oo | Ap n—oo (n + 1) bt n—oo | ay, T nSoo (n + 1)n+1 3nn!

2
n n
:5-mn< ) — 5. _ 3. ny gl
n—oo \ 1+ 1 nhanolo<n—{—1 3 e’
Since the limit is greater than 1, the series diverges. ] ] _
Since 3/e > 1, the series diverges.
2. o ]

on 7y n!
= 2 ' —1 (QTL)'
Let a,, = g’—n Then " '
Let a,, = (Q”T Then

~ape| . (n+1)2 20 )
lim = lim
w30 | ay | ot 2L g2 a1 (n+1)! (2n)!
9 lim |——| = lim .
1. n+1 1 n—oo | ap n—oo (2n+2)!  nl
=—- lim =—.
= lim =0.
The series converges absolutely. n—oo (2n +2)(2n + 1)
5 > on The series converges absolutely.
n=1 nt
Let a, = ETZ Then
. an41| ;. 2ntl n"
nlggo an o nlggo (n + 1)n+1 on

D! (n+ 1)+l
(2n (2n+1)
oo (n+ 1) - (nokl)n
= 0.

The series converges absolutely.

00277,
n!

n=1

n

Let a,, = i—, Then

on+l ! .
lim |2 = 2 9. Z( D) on
n—oo | ap n—00 (n + 1)' on n=1
_ 2 0 Let an:|(—1)"-2%‘:2%. Then
n+1 ’
The series converges absolutely. lim |2 — i +11 ) 2"
o n—oo | ap n—oo 21t n
5. n L 1
" =—- lim ) ==
n=1 3 2 n—oo n 2
—n
Let ap = gv. Then The series converges absolutely.
nr 3"
lim Antl| lim (n+1) 3—
n—o0o | ap n—oco 3Jn+l n!
.on+1
= lim = 00.
n—oo 3

The series diverges.
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Champ Davis

Champ Davis


n+1_

= lim 3
n—oo N

The series converges absolutely.

=0.
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Remainder Estimates

( 1)n+1
1. Approximate Z ~——%— using the first 4 terms.
n=1
1 1 1 205
Sy=1——-+—-——= ~ 1.4236.

4 9 16 144
The remainder satisfies

1
< |—|=0.04.
R < |52 =00
)n
2. Approximate Z - using the first 3 terms.
1 1 1 103
b =~ —0.4087.
5= 5T g T g T Tany ¥ 00T
The error satisfies
1 1
R3] < — =~ 0.0154.
Bsl < 155 1‘ 65

3. How many terms are needed to approximate
> (_1)n+1
to within 0.00017

n=1

We want to solve for n so that b,1 < 0.0001

<0.0001 = n+1> 10000~ 6.3.

1
(n+1)>5
Thus, n > 5.3, so 6 terms are needed.

)nln(n +1)

o0
4. Use the first 5 terms of Z(— 5 to ap-
n

n=1
proximate the sum.

In2 In3 In4 In5 Iné6
ettt e

~ —0.6931 + 0.2747 — 0.1540 4 0.0866 — 0.0553
= —0.5411.

The error satisfies

1
|Rs| < bg = n6(27) ~ 0.054053.

5. Determine the minimum number of terms needed

—1)"

o0
to estimate Z ( with error less than 0.01.
= nlnn

We need to solve for n so that b,+; < 0.01:

1
(n+1)In(n+1)

< 0.01.

We can solve this by guessing and checking. In-
1 1 .
deed, 29T(29) > 001, but 30T(30) < 0.01. This
means that n should be 29 in order for b,,41 < 0.01.
Since n starts at 2, we use the first 28 terms.
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1
6. Approximate using the first 5 terms.

5

11,1, 1 1 1
S — - 44
’ ZQ—Fl 2 5 0 T s

~ 0.54+0.24 0.1 + 0.0588 + 0.0385 = 0.8973.

Use the remainder bound:

o0

/5 $2+1d$:tan ()]s

= g — tan~1(5)

~ 1.5708 — 1.3734
= 0.1974.

So, error < 0.1974.

7. Estimate the remainder when approximating
o

1
annn

n=2

from n =2 to n = 10.

* 1
Rw < / dr.
10 rlnzx

Let u =Inz, du = %dm:

R | * 1
/ d:vz/ —du = o0
10 rlnx Inlo U

So, the series diverges and the error is unbounded.

oo
. 1 .
8. Estimate ng_l 32 using the first 8 terms.

51
Ss = Z n3/2
n=1
~ 14 0.3536 + 0.1925 + 0.125

+ 0.0894 + 0.0680 + 0.0535 + 0.0442
= 1.9262.

Estimate error:

o0 1 00
/ de = —2p7 /2 .= 2. — ~0.7071.
8



9.

10.

Find the smallest n such that Z oy approx-

1
n k)2
imates the full sum within 0. 05

‘We want:

> 1
—d .
/n 2(n)? x < 0.05

Use substitution v = Inx, du = %dm:

0 1 > 1 1
= de= Sdu=—.
/n z(Inx)? v /hm u? Y Inn

Set - < 0.05 = Inn > 20 = n > %.
So, n = 485,165,195 terms are needed.

[e.e]
Inn
Approximate 2 —- using the first 6 terms.
n=2 n

S6=21%

n=2
~ 0.0866 + 0.0459 + 0.0277 + 0.0181 + 0.0122 + 0.0086
= 0.1991.

Estimate error:

Use integration by parts:

1 1
w=Inz, dv=2z3dz du——da:, V=
2z
/lnx Inz / Inz 1
S 222 22 42
Evaluating from 7 to co:
Inz 1 OO_()+II1'7+ 1
202 4a?|, 0 2-49  4-49
19459 n 1
T 98 196
~ 0.0199 4 0.0051
= 0.025.

So, the error is less than 0.025.
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Taylor Polynomials

1. f(x) =2%% a=0
2 3
z _ T
e—1+x+2!+3!+
4 5
200 _ g2 3, T
et =z +m+2—|—6+

1
2. f(x):m, a=1

Let w =2 — 1, then = 1 + w. Expand f(1 + u):
1 1
1 = =
SO = i Tu? ~ 2 2ur 2

Use polynomial division or binomial expansion to

find: ) .
1 w wu U
T
=——-(z-1)+-(z—-1)*——(z—-1)"+
2 2
3. f(x) =z, a=16
Let u = x — 16, then f(z) = (16 4+ u)'/%. Use
binomial expansion:
Ll w14
f@) =16 (14 1)
= 2+i(m—16)——(x—16)2+ (z—16)>4- - -
32 2048 131072
4. f(z) =cos(x?), a=0
VR B |

Let u =z — 7, then

f(x) =sin <2 : (% + u)> = sin (g + 2u> = cos(2u)

B (2u)2 (2u)4 (2u)6
T R TR A
s 2 s 4 m
(T2 A Ty 2 e
gl gt
6. f(z)=In(1+2z), a=0
(22)? | (22)°  (22)*
In(1 + 2z) =2z — —
n(l+2z) =2z 5 T3 1
3
:235—2:624—8%—43:4-4----
7. f(z) =tan"Y(z), a=0
) 3 5 7
tan M(z) =2 — — + — — —
an” (z) ==z 3+5 7+
x
8 f(x)_].—x, CL—O
1T—= =zt + a3+t
9. flz)=¢"", a=0

4 6
x? _ 2 X T
e _1+x+2!+3!+
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Mixed Series Practice

1. We have:
)
. n“ + cosn . cosn
lim ——— = lim 1+ 5
n—00 n n—0o0 n

=v14+0=1.

2. Let x,, = (1 — ﬁ)gn Then:

=03

3. We examine the sequence of partial sums:

3/2
— (6_1)3/2 = e 3/2,

n2

nh—>Igo Sn = nh—{go In(n+1)+3n

= i n _
B nlﬂn;o 3+ In(n+1) o

n

Q.

Since the partial sums diverge, the series diverges.

4. We compute the limit of the partial sums:
, _ 4n? +1 4
W = BT 2

Therefore, the series converges, and

(o]
Zan = lim S, = 2.
n—oo

n=1

5. Using linearity of infinite series:

D (20, —3by) =2 an—3) by

=2(5) —3(4) =10 — 12 = -2,

6. This is a geometric series with first term

6 6 3 1

2" 16 8 " Tu
The sum is:

6 a 3/8  3/8 1

o0

m T 1-p 1-1/4 3/4 2

n=2
7. Asn — oo,

nt+3 n*
nn+1)2 n-n?

= n.

Since % ~ n, the terms do not tend to zero.

Therefore, the series diverges by the Test for Di-
vergence.

38

8.

10.

11.

12.

Compare with > b, =" (%)n:

4™ 5" —1 1
lim—-5 =liml——=1.
n—oo0 HN 4qn n—00 n

Since > (%)n is a convergent geometric series, the
given series converges by the Limit Comparison
Test.

. We have
. an+1 . (n + 1)2 2m
lim = lim ——~— - —
n—oo | ap, nooo n+l n2

1 <n—}—1)2 1
=—- lim =-.
2 n—oo n 2

Since the limit is less than 1, the series converges
absolutely.

Let a,, = % Then:

) Cn+1 n ) n
= lim -— =c- lim =c
n—soon+1 " n—oon + 1

an+1
anp,

lim

n—oo

By the Ratio Test:

e If ¢ < 1, the limit is less than 1, so the series
converges.

e If ¢ > 1, the limit is greater than 1, so the
series diverges.

o If ¢ = +1, the limit is 1, so the Ratio Test is
inconclusive.
2n 2n

i — _ 2
We compare with b, = 3" ~ 75 = 5.

For large n, cosn is bounded and negligible. So:

2n 2n 2

< ~ .
n34+cosn n3—1 n?

Since | % converges, the original series converges
by the Comparison Test.

Since | sin(n?)] < 1, we have

sin(n?)

1 1
<
nd+1

341 o pd

Since ) n% converges, the series converges abso-
lutely.



13.

14.

15.

Let (1) )
an:n2_4, bn:ﬁ
Then
. An | .. 1 2 4. n? N
S n!—nlzeonz_zl G

Since Y b, = > - converges, the series Y |an|
also converges by the Limit Comparison Test.

Therefore, the series converges absolutely.

The remainder satisfies:
1 1
Ryl < |=| = —= = 0.008.
Tl < 153) = 125
Let f(z) = m For z > 2, the function is con-

tinuous, positive, and decreasing, so the Integral

Test applies:
& 1
——dx.
/2 z(Inz)? “

Substitute v = Inx, so du = %dw. Then:

& 1 1 17% 1
—— —de= [ —du=|-——| =—.
o z(lnx) o U Ul In2

Since the integral converges, the series converges
by the Integral Test.

To estimate the error after the first 5 terms (n = 2
through 6), we use the remainder estimate:

e 1 1] 1
< | 0 gp=|-—] ==
H _/6 z(Inx)? v [ lnxL In6

Thus,

1 1
Rg < — ~ ——— =~ (.5583.
=6~ 1.7918
The series converges, and the error in approximat-
ing the sum using the first 5 terms is at most

1
e~ 0.5583.
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