
Math 2300: Midterm 3 Practice Solutions

1. Evaluate lim
n→∞

√
n2 + cosn

n
.

Solution:

lim
n→∞

√
n2 + cosn

n
= lim

n→∞

√
n2 + cosn

n2
= lim

n→∞

√
1 +

cosn

n2
=

√
1 + 0 = 1.

2. Suppose Sn =
n∑

k=1

ak =
n2

ln(n+ 1) + 3n
. Determine whether

∑∞
n=1 an converges and, if so, to

what value.

Solution: We examine the sequence of partial sums:

lim
n→∞

Sn = lim
n→∞

n2

ln(n+ 1) + 3n

= lim
n→∞

n

3 + ln(n+1)
n

= ∞.

Since the partial sums diverge, the series diverges.

3. Suppose Sn =
n∑

k=1

ak =
4n2

ln(n+ 1) + 4n2
. Determine whether

∑∞
n=1 an converges and, if so,

to what value.

Solution: We examine the sequence of partial sums:

lim
n→∞

Sn = lim
n→∞

4n2

ln(n+ 1) + 4n2
= lim

n→∞

4

ln(n+ 1)

n2
+ 4

= 1.

Thus, the sequence of partial sums converges to 1. Therefore, the series
∑∞

n=1 an con-
verges, and the sum is 1.
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4. Suppose Sn =

n∑
k=1

ak =
4n2 + 1

2n2 + 5n+ 1
. Determine whether

∑∞
n=1 an converges and, if so, to

what value.

Solution: We compute the limit of the partial sums:

lim
n→∞

Sn = lim
n→∞

4n2 + 1

2n2 + 5n+ 1
=

4

2
= 2.

Therefore, the series converges, and

∞∑
n=1

an = lim
n→∞

Sn = 2.

5. If
∑

an = π and
∑

bn = 4, find
∑

(2an − 3bn).

Solution: Using linearity of infinite series:∑
(2an − 3bn) = 2

∑
an − 3

∑
bn

= 2(π)− 3(4) = 2π − 12.

6. Find the sum of the geometric series:
∞∑
n=2

6

4n
.

Solution: This is a geometric series with first term

a =
6

42
=

6

16
=

3

8
, r =

1

4
.

The sum is:
∞∑
n=2

6

4n
=

a

1− r
=

3/8

1− 1/4
=

3/8

3/4
=

1

2
.
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7. Determine whether the series

∞∑
n=2

n4 + 3

n(n+ 1)2
converges. If it converges, find its sum.

Solution: As n → ∞,
n4 + 3

n(n+ 1)2
∼ n4

n · n2
= n.

Since n4+3
n(n+1)2

∼ n, the terms do not tend to zero. Therefore, the series diverges by the

Test for Divergence.

8. Determine whether the series
∞∑
n=1

4n

5n − 1
converges.

Solution: Compare with
∑

bn =
∑(

4
5

)n
:

lim
n→∞

4n

5n
· 5

n − 1

4n
= lim

n→∞
1− 1

5n
= 1.

Since
∑(

4
5

)n
is a convergent geometric series, the given series converges by the Limit

Comparison Test.

9. Let an =
n2

2n
. Use the Ratio Test to determine whether

∑
an converges or diverges.

Solution: We have

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

(n+ 1)2

2n+1
· 2

n

n2

=
1

2
· lim
n→∞

(
n+ 1

n

)2

=
1

2
.

Since the limit is less than 1, the series converges absolutely.
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10. Let an =
n!

2n
. Use the Ratio Test to determine whether

∑
an converges or diverges.

Solution: We apply the Ratio Test:

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

(n+ 1)!

2n+1
· 2

n

n!
= lim

n→∞

(n+ 1)!

n!
· 1
2

= lim
n→∞

(n+ 1) · 1
2

= ∞.

Since the limit is greater than 1, the series diverges by the Ratio Test.

11. Use the Ratio Test to determine for which values of c > 0 the series

∞∑
n=1

cn

n
converges.

Solution: Let an = cn

n . Then:

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

cn+1

n+ 1
· n

cn
= c · lim

n→∞

n

n+ 1
= c.

By the Ratio Test:

• If c < 1, the limit is less than 1, so the series converges.

• If c > 1, the limit is greater than 1, so the series diverges.

• If c = 1, the limit is 1, so the Ratio Test is inconclusive.

12. Determine whether the series

∞∑
n=1

2n

n3 + cosn
converges or diverges.

Solution: We compare the given series to a simpler one using the Limit Comparison
Test, which applies since all terms are positive for n ≥ 1.

Note that for all n, we have −1 ≤ cosn ≤ 1, so

n3 − 1 ≤ n3 + cosn ≤ n3 + 1.

This implies that for large n, the term n3+cosn ∼ n3. Thus, we consider the comparison
series

bn =
2n

n3
=

2

n2
,

which is a convergent p-series with p = 2 > 1.

Page 4



We now compute the limit:

lim
n→∞

an
bn

= lim
n→∞

2n

n3 + cosn
2

n2

= lim
n→∞

2n · n2

2(n3 + cosn)

= lim
n→∞

n3

n3 + cosn

= lim
n→∞

n3

n3 + cosn
· 1/n

3

1/n3

= lim
n→∞

1

1 + cosn
n3

=
1

1 + 0
= 1

Because the limit is a positive finite number and the comparison series
∑

bn =
∑ 2

n2

converges, the original series
∞∑
n=1

2n

n3 + cosn

also converges by the Limit Comparison Test.

13. Determine whether
∞∑
n=1

sin(n3)

n3 + 1
converges absolutely, conditionally, or diverges.

Solution: We first test for absolute convergence by considering the series

∞∑
n=1

∣∣∣∣sin(n3)

n3 + 1

∣∣∣∣ .
Since | sin(n3)| ≤ 1 for all n, we have:∣∣∣∣sin(n3)

n3 + 1

∣∣∣∣ ≤ 1

n3 + 1
<

1

n3
.

Because
∑ 1

n3 is a convergent p-series with p = 3 > 1, the Comparison Test implies that

∞∑
n=1

∣∣∣∣sin(n3)

n3 + 1

∣∣∣∣
converges absolutely.
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14. Determine whether

∞∑
n=3

(−1)n

n2 − 4
converges absolutely, conditionally, or diverges.

Solution: Let

an =
(−1)n

n2 − 4
, bn =

1

n2
.

Then

lim
n→∞

∣∣∣∣anbn
∣∣∣∣ = lim

n→∞

1

n2 − 4
· n2 = lim

n→∞

n2

n2 − 4
= 1.

Since
∑

bn =
∑ 1

n2 converges, the series
∑

|an| also converges by the Limit Comparison
Test.

Therefore, the series converges absolutely.

15. Use the Alternating Series Remainder Theorem to estimate the error when approximating
∞∑
n=1

(−1)n
1

n3
using the first 4 terms.

Solution:

|R4| ≤
∣∣∣∣ 153

∣∣∣∣ = 1

125
= 0.008.

16. Use the Integral Test to show that

∞∑
n=1

3n2

(n3 + 1)3
converges. Remember to verify that the cor-

responding function
∞∑
n=1

3x2

(x3 + 1)3
is positive, continuous, and decreasing for x ≥ 1. Estimate

the error when approximating the series with the first 4 terms.

Solution: Let f(x) =
3x2

(x3 + 1)3
. To apply the Integral Test, we must verify the following

on the interval [2,∞):

• Positive: Since both the numerator and denominator are positive for x ≥ 2, it
follows that f(x) > 0 on this interval.

• Continuous: The function f(x) is a rational function with no discontinuities for
x ≥ 2, so it is continuous.
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• Decreasing: We compute the derivative to confirm that f(x) is decreasing:

f(x) =
3x2

(x3 + 1)3
,

f ′(x) =
6x(x3 + 1)3 − 3x2 · 3(x3 + 1)2 · 3x2

(x3 + 1)6

=
6x(x3 + 1)3 − 27x4(x3 + 1)2

(x3 + 1)6

=
6x− 21x4

(x3 + 1)4

The numerator is negative for x ≥ 1, so f ′(x) < 0, and f(x) is decreasing.

Since f(x) is positive, continuous, and decreasing for x ≥ 1, we may apply the Integral
Test. Let Let u = x3 + 1 ⇒ du = 3x2 dx.∫ ∞

1

3x2

(x3 + 1)3
dx =

∫ ∞

u=13+1

1

u3
du =

∫ ∞

2
u−3 du

=

[
u−2

−2

]∞
2

=
1

2 · 22
=

1

8
.

The integral converges, so by the Integral Test, the series

∞∑
n=1

3n2

(n3 + 1)3

converges.

To estimate the error using the first 4 terms, let

S4 =

4∑
n=1

3n2

(n3 + 1)3
.

Note: since n = 2 to start, the first 4 terms stop at n = 5. The remainder satisfies

R4 ≤
∫ ∞

4

3x2

(x3 + 1)3
dx.

Again, using the substitution u = x3 + 1, du = 3x2 dx, and when x = 4, u = 65, we get

R4 ≤
∫ ∞

65

1

u3
du =

[
u−2

−2

]∞
65

=
1

2 · 652
=

1

8450
.

The series converges by the Integral Test, and the error from using the first 4 terms is
less than 1

8450 .
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17. Use the Integral Test to show that

∞∑
n=2

1

n ln(n)2
converges. Remember to verify that the cor-

responding function

∞∑
n=2

1

x ln(x)2
is positive, continuous, and decreasing for x ≥ 2. Estimate

the error when approximating the series with the first 5 terms.

Solution: Let f(x) = 1
x(lnx)2

. For x ≥ 2, the function is continuous, positive, and

decreasing (check!), so the Integral Test applies:∫ ∞

2

1

x(lnx)2
dx.

Substitute u = lnx, so du = 1
xdx. Then:∫ ∞

2

1

x(lnx)2
dx =

∫ ∞

ln 2

1

u2
du =

[
−1

u

]∞
ln 2

=
1

ln 2
.

Since the integral converges, the series converges by the Integral Test.

To estimate the error after the first 5 terms (n = 2 through 6), we use the remainder
estimate:

R6 ≤
∫ ∞

6

1

x(lnx)2
dx =

[
− 1

lnx

]∞
6

=
1

ln 6
.

Thus,

R6 ≤
1

ln 6
≈ 1

1.7918
≈ 0.5583.

The series converges, and the error in approximating the sum using the first 5 terms is
at most 1

ln 6 ≈ 0.5583.

18. If the third degree Taylor polynomial of f(x) about x = 4 is

T3(x) = 5 + 4(x− 4)− 3(x− 4)2 − 2(x− 4)3

is f(x) increasing or decreasing at x = 4? Is f(x) concave up or concave down at x = 4?

Solution:

• Since f ′(4) > 0, the function is increasing at x = 4.

• Since f ′′(4) < 0, the function is concave down at x = 4.
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