Math 2300: Midterm 3 Practice Solutions

1. Evaluate $\lim_{n\to\infty} \frac{\sqrt{n^2 + \cos n}}{n}$.

Solution:

$$\lim_{n \to \infty} \frac{\sqrt{n^2 + \cos n}}{n} = \lim_{n \to \infty} \sqrt{\frac{n^2 + \cos n}{n^2}} = \lim_{n \to \infty} \sqrt{1 + \frac{\cos n}{n^2}} = \sqrt{1 + 0} = 1.$$

2. Suppose $S_n = \sum_{k=1}^n a_k = \frac{n^2}{\ln(n+1) + 3n}$. Determine whether $\sum_{n=1}^\infty a_n$ converges and, if so, to what value.

Solution: We examine the sequence of partial sums:

$$\lim_{n \to \infty} S_n = \lim_{n \to \infty} \frac{n^2}{\ln(n+1) + 3n}$$
$$= \lim_{n \to \infty} \frac{n}{3 + \frac{\ln(n+1)}{n}} = \infty.$$

Since the partial sums diverge, the series diverges.

3. Suppose $S_n = \sum_{k=1}^n a_k = \frac{4n^2}{\ln(n+1) + 4n^2}$. Determine whether $\sum_{n=1}^{\infty} a_n$ converges and, if so, to what value.

Solution: We examine the sequence of partial sums:

$$\lim_{n \to \infty} S_n = \lim_{n \to \infty} \frac{4n^2}{\ln(n+1) + 4n^2} = \lim_{n \to \infty} \frac{4}{\frac{\ln(n+1)}{n^2} + 4} = 1.$$

Thus, the sequence of partial sums converges to 1. Therefore, the series $\sum_{n=1}^{\infty} a_n$ converges, and the sum is 1.

1

4. Suppose $S_n = \sum_{k=1}^n a_k = \frac{4n^2+1}{2n^2+5n+1}$. Determine whether $\sum_{n=1}^{\infty} a_n$ converges and, if so, to what value.

Solution: We compute the limit of the partial sums:

$$\lim_{n \to \infty} S_n = \lim_{n \to \infty} \frac{4n^2 + 1}{2n^2 + 5n + 1} = \frac{4}{2} = 2.$$

Therefore, the series converges, and

$$\sum_{n=1}^{\infty} a_n = \lim_{n \to \infty} S_n = 2.$$

5. If $\sum a_n = \pi$ and $\sum b_n = 4$, find $\sum (2a_n - 3b_n)$.

Solution: Using linearity of infinite series:

$$\sum (2a_n - 3b_n) = 2\sum a_n - 3\sum b_n$$
$$= 2(\pi) - 3(4) = 2\pi - 12.$$

6. Find the sum of the geometric series: $\sum_{n=2}^{\infty} \frac{6}{4^n}$.

Solution: This is a geometric series with first term

$$a = \frac{6}{4^2} = \frac{6}{16} = \frac{3}{8}, \quad r = \frac{1}{4}.$$

The sum is:

$$\sum_{n=2}^{\infty} \frac{6}{4^n} = \frac{a}{1-r} = \frac{3/8}{1-1/4} = \frac{3/8}{3/4} = \frac{1}{2}.$$

7. Determine whether the series $\sum_{n=2}^{\infty} \frac{n^4+3}{n(n+1)^2}$ converges. If it converges, find its sum.

Solution: As $n \to \infty$,

$$\frac{n^4 + 3}{n(n+1)^2} \sim \frac{n^4}{n \cdot n^2} = n.$$

Since $\frac{n^4+3}{n(n+1)^2} \sim n$, the terms do not tend to zero. Therefore, the series diverges by the Test for Divergence.

8. Determine whether the series $\sum_{n=1}^{\infty} \frac{4^n}{5^n - 1}$ converges.

Solution: Compare with $\sum b_n = \sum \left(\frac{4}{5}\right)^n$:

$$\lim_{n\to\infty}\frac{4^n}{5^n}\cdot\frac{5^n-1}{4^n}=\lim_{n\to\infty}1-\frac{1}{5^n}=1.$$

Since $\sum \left(\frac{4}{5}\right)^n$ is a convergent geometric series, the given series converges by the Limit Comparison Test.

9. Let $a_n = \frac{n^2}{2^n}$. Use the Ratio Test to determine whether $\sum a_n$ converges or diverges.

Solution: We have

$$\begin{split} \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| &= \lim_{n \to \infty} \frac{(n+1)^2}{2^{n+1}} \cdot \frac{2^n}{n^2} \\ &= \frac{1}{2} \cdot \lim_{n \to \infty} \left(\frac{n+1}{n} \right)^2 = \frac{1}{2}. \end{split}$$

Since the limit is less than 1, the series converges absolutely.

10. Let $a_n = \frac{n!}{2^n}$. Use the Ratio Test to determine whether $\sum a_n$ converges or diverges.

Solution: We apply the Ratio Test:

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{(n+1)!}{2^{n+1}} \cdot \frac{2^n}{n!} = \lim_{n \to \infty} \frac{(n+1)!}{n!} \cdot \frac{1}{2}$$
$$= \lim_{n \to \infty} (n+1) \cdot \frac{1}{2}$$
$$= \infty.$$

Since the limit is greater than 1, the series diverges by the Ratio Test.

11. Use the Ratio Test to determine for which values of c > 0 the series $\sum_{n=1}^{\infty} \frac{c^n}{n}$ converges.

Solution: Let $a_n = \frac{c^n}{n}$. Then:

$$\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=\lim_{n\to\infty}\frac{c^{n+1}}{n+1}\cdot\frac{n}{c^n}=c\cdot\lim_{n\to\infty}\frac{n}{n+1}=c.$$

By the Ratio Test:

- If c < 1, the limit is less than 1, so the series converges.
- If c > 1, the limit is greater than 1, so the series diverges.
- If c = 1, the limit is 1, so the Ratio Test is inconclusive.
- 12. Determine whether the series $\sum_{n=1}^{\infty} \frac{2n}{n^3 + \cos n}$ converges or diverges.

Solution: We compare the given series to a simpler one using the Limit Comparison Test, which applies since all terms are positive for $n \ge 1$.

Note that for all n, we have $-1 \le \cos n \le 1$, so

$$n^3 - 1 \le n^3 + \cos n \le n^3 + 1.$$

This implies that for large n, the term $n^3 + \cos n \sim n^3$. Thus, we consider the comparison series

$$b_n = \frac{2n}{n^3} = \frac{2}{n^2},$$

which is a convergent p-series with p = 2 > 1.

We now compute the limit:

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\frac{2n}{n^3 + \cos n}}{\frac{2}{n^2}} = \lim_{n \to \infty} \frac{2n \cdot n^2}{2(n^3 + \cos n)}$$

$$= \lim_{n \to \infty} \frac{n^3}{n^3 + \cos n}$$

$$= \lim_{n \to \infty} \frac{n^3}{n^3 + \cos n} \cdot \frac{1/n^3}{1/n^3}$$

$$= \lim_{n \to \infty} \frac{1}{1 + \frac{\cos n}{n^3}}$$

$$= \frac{1}{1 + 0} = 1$$

Because the limit is a positive finite number and the comparison series $\sum b_n = \sum \frac{2}{n^2}$ converges, the original series

$$\sum_{n=1}^{\infty} \frac{2n}{n^3 + \cos n}$$

also **converges** by the Limit Comparison Test.

13. Determine whether $\sum_{n=1}^{\infty} \frac{\sin(n^3)}{n^3+1}$ converges absolutely, conditionally, or diverges.

Solution: We first test for absolute convergence by considering the series

$$\sum_{n=1}^{\infty} \left| \frac{\sin(n^3)}{n^3 + 1} \right|.$$

Since $|\sin(n^3)| \le 1$ for all n, we have:

$$\left| \frac{\sin(n^3)}{n^3 + 1} \right| \le \frac{1}{n^3 + 1} < \frac{1}{n^3}.$$

Because $\sum \frac{1}{n^3}$ is a convergent p-series with p=3>1, the Comparison Test implies that

$$\sum_{n=1}^{\infty} \left| \frac{\sin(n^3)}{n^3 + 1} \right|$$

converges absolutely.

14. Determine whether $\sum_{n=3}^{\infty} \frac{(-1)^n}{n^2-4}$ converges absolutely, conditionally, or diverges.

Solution: Let

$$a_n = \frac{(-1)^n}{n^2 - 4}, \quad b_n = \frac{1}{n^2}.$$

Then

$$\lim_{n\to\infty} \left|\frac{a_n}{b_n}\right| = \lim_{n\to\infty} \frac{1}{n^2-4} \cdot n^2 = \lim_{n\to\infty} \frac{n^2}{n^2-4} = 1.$$

Since $\sum b_n = \sum \frac{1}{n^2}$ converges, the series $\sum |a_n|$ also converges by the Limit Comparison Test.

Therefore, the series converges absolutely.

15. Use the Alternating Series Remainder Theorem to estimate the error when approximating $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n^3}$ using the first 4 terms.

Solution:

$$|R_4| \le \left| \frac{1}{5^3} \right| = \frac{1}{125} = 0.008.$$

16. Use the Integral Test to show that $\sum_{n=1}^{\infty} \frac{3n^2}{(n^3+1)^3}$ converges. Remember to verify that the corresponding function $\sum_{n=1}^{\infty} \frac{3x^2}{(x^3+1)^3}$ is positive, continuous, and decreasing for $x \geq 1$. Estimate the error when approximating the series with the first 4 terms.

Solution: Let $f(x) = \frac{3x^2}{(x^3+1)^3}$. To apply the Integral Test, we must verify the following on the interval $[2,\infty)$:

- **Positive:** Since both the numerator and denominator are positive for $x \geq 2$, it follows that f(x) > 0 on this interval.
- Continuous: The function f(x) is a rational function with no discontinuities for $x \geq 2$, so it is continuous.

• **Decreasing:** We compute the derivative to confirm that f(x) is decreasing:

$$f(x) = \frac{3x^2}{(x^3+1)^3},$$

$$f'(x) = \frac{6x(x^3+1)^3 - 3x^2 \cdot 3(x^3+1)^2 \cdot 3x^2}{(x^3+1)^6}$$

$$= \frac{6x(x^3+1)^3 - 27x^4(x^3+1)^2}{(x^3+1)^6}$$

$$= \frac{6x - 21x^4}{(x^3+1)^4}$$

The numerator is negative for $x \ge 1$, so f'(x) < 0, and f(x) is decreasing.

Since f(x) is positive, continuous, and decreasing for $x \ge 1$, we may apply the Integral Test. Let Let $u = x^3 + 1 \Rightarrow du = 3x^2 dx$.

$$\int_{1}^{\infty} \frac{3x^{2}}{(x^{3}+1)^{3}} dx = \int_{u=1^{3}+1}^{\infty} \frac{1}{u^{3}} du = \int_{2}^{\infty} u^{-3} du$$
$$= \left[\frac{u^{-2}}{-2} \right]_{2}^{\infty} = \frac{1}{2 \cdot 2^{2}} = \frac{1}{8}.$$

The integral converges, so by the Integral Test, the series

$$\sum_{n=1}^{\infty} \frac{3n^2}{(n^3+1)^3}$$

converges.

To estimate the error using the first 4 terms, let

$$S_4 = \sum_{n=1}^4 \frac{3n^2}{(n^3+1)^3}.$$

Note: since n=2 to start, the first 4 terms stop at n=5. The remainder satisfies

$$R_4 \le \int_4^\infty \frac{3x^2}{(x^3+1)^3} \, dx.$$

Again, using the substitution $u = x^3 + 1$, $du = 3x^2 dx$, and when x = 4, u = 65, we get

$$R_4 \le \int_{65}^{\infty} \frac{1}{u^3} du = \left[\frac{u^{-2}}{-2} \right]_{65}^{\infty} = \frac{1}{2 \cdot 65^2} = \frac{1}{8450}.$$

The series converges by the Integral Test, and the error from using the first 4 terms is less than $\frac{1}{8450}$.

17. Use the Integral Test to show that $\sum_{n=2}^{\infty} \frac{1}{n \ln(n)^2}$ converges. Remember to verify that the corresponding function $\sum_{n=2}^{\infty} \frac{1}{x \ln(x)^2}$ is positive, continuous, and decreasing for $x \geq 2$. Estimate the error when approximating the series with the first 5 terms.

Solution: Let $f(x) = \frac{1}{x(\ln x)^2}$. For $x \ge 2$, the function is continuous, positive, and decreasing (check!), so the Integral Test applies:

$$\int_2^\infty \frac{1}{x(\ln x)^2} \, dx.$$

Substitute $u = \ln x$, so $du = \frac{1}{x}dx$. Then:

$$\int_{2}^{\infty} \frac{1}{x(\ln x)^{2}} dx = \int_{\ln 2}^{\infty} \frac{1}{u^{2}} du = \left[-\frac{1}{u} \right]_{\ln 2}^{\infty} = \frac{1}{\ln 2}.$$

Since the integral converges, the series converges by the Integral Test.

To estimate the error after the first 5 terms (n = 2 through 6), we use the remainder estimate:

$$R_6 \le \int_6^\infty \frac{1}{x(\ln x)^2} dx = \left[-\frac{1}{\ln x} \right]_6^\infty = \frac{1}{\ln 6}.$$

Thus,

$$R_6 \le \frac{1}{\ln 6} \approx \frac{1}{1.7918} \approx 0.5583.$$

The series converges, and the error in approximating the sum using the first 5 terms is at most $\frac{1}{\ln 6} \approx 0.5583$.

18. If the third degree Taylor polynomial of f(x) about x = 4 is

$$T_3(x) = 5 + 4(x-4) - 3(x-4)^2 - 2(x-4)^3$$

is f(x) increasing or decreasing at x = 4? Is f(x) concave up or concave down at x = 4?

Solution:

- Since f'(4) > 0, the function is increasing at x = 4.
- Since f''(4) < 0, the function is concave down at x = 4.