Review of Calculus I

This document provides a review of essential Calculus I topics that are foundational for success in Calculus II.

1 Limits and Continuity

- Definition of a limit: $\lim_{x\to c} f(x) = L$. This means that as x approaches c, f(x) gets arbitrarily close to L.
- One-sided limits: $\lim_{x\to c^+} f(x)$ (approaching from the right) and $\lim_{x\to c^-} f(x)$ (approaching from the left).
- Limit laws:
 - $-\lim_{x\to c} [f(x) + g(x)] = \lim_{x\to c} f(x) + \lim_{x\to c} g(x).$
 - $\lim_{x \to c} [f(x)g(x)] = \lim_{x \to c} f(x) \cdot \lim_{x \to c} g(x).$
 - $-\lim_{x\to c} \frac{f(x)}{g(x)} = \frac{\lim_{x\to c} f(x)}{\lim_{x\to c} g(x)}, \text{ provided } \lim_{x\to c} g(x) \neq 0.$

• Techniques for computing limits:

- Direct substitution.
- Factoring and simplifying.
- Rationalizing the numerator or denominator.
- L'Hôpital's Rule for indeterminate forms like $\frac{0}{0}$ or $\frac{\infty}{\infty}$.
- Continuity: A function f(x) is continuous at x = c if:
 - 1. $\lim_{x\to c} f(x)$ exists.
 - 2. f(c) is defined.
 - 3. $\lim_{x \to c} f(x) = f(c)$.

• Types of discontinuities:

- Removable discontinuity: Limit exists, but f(c) is undefined or not equal to the limit.
- Jump discontinuity: Left-hand and right-hand limits are not equal.
- Infinite discontinuity: Limit approaches ∞ or $-\infty$.

2 Derivatives

Key Concepts

• Definition: $f'(x) = \lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$.

• Differentiation rules:

1. Power Rule: $\frac{d}{dx}[x^n] = nx^{n-1}$.

2. Product Rule: $\frac{d}{dx}[uv] = u'v + uv'$.

3. Quotient Rule: $\frac{d}{dx} \left[\frac{u}{v} \right] = \frac{u'v - uv'}{v^2}$.

4. Chain Rule: $\frac{d}{dx}f(g(x)) = f'(g(x))g'(x)$.

• Applications:

- Tangent lines: The slope of the tangent to f(x) at x = a is f'(a).

- Velocity and acceleration: $v(t) = s'(t), \ a(t) = v'(t).$

– Optimization problems: Finding maxima or minima using f'(x) = 0.

- Related rates: Solving problems involving rates of change of related variables.

General Derivative Rules

Rule	Formula
Power Rule	$\frac{d}{dx}x^n = nx^{n-1}$
Product Rule	$\frac{d}{dx}[uv] = u'v + uv'$
Quotient Rule	$rac{d}{dx}\left[rac{u}{v} ight] = rac{u'v - uv'}{v^2}$
Chain Rule	$\frac{d}{dx}f(g(x)) = f'(g(x))g'(x)$
Exponential Rule	$\frac{d}{dx}e^x = e^x$
Logarithmic Rule	$\frac{d}{dx}\ln x = \frac{1}{x}$

Trigonometric Derivatives

Function	Derivative
$\sin x$	$\cos x$
$\cos x$	$-\sin x$
$\tan x$	$\sec^2 x$
$\cot x$	$-\csc^2 x$
$\sec x$	$\sec x \tan x$
$\csc x$	$-\csc x \cot x$

3 Integrals

• **Definition:** $\int_a^b f(x) dx$ computes the net signed area under the curve f(x) between x = a and x = b. The area is positive when the function is above the x-axis and negative when below.

• Fundamental Theorem of Calculus:

- Part 1: If F(x) is an antiderivative of f(x), then $\int_a^b f(x) dx = F(b) - F(a)$.

- Part 2: $\frac{d}{dx} \int_a^x f(t) dt = f(x)$.

• Basic Properties:

- Linearity: $\int_a^b [c_1 f(x) + c_2 g(x)] dx = c_1 \int_a^b f(x) dx + c_2 \int_a^b g(x) dx$.

– Additivity: $\int_a^c f(x) dx + \int_c^b f(x) dx = \int_a^b f(x) dx.$

– Reversal of Limits: $\int_a^b f(x) dx = -\int_b^a f(x) dx$.

Common Integration Formulas

Function	Integral
k	$\int k dx = kx + C$
$x^n, n \neq -1$	$\int x^n dx = \frac{x^{n+1}}{n+1} + C$
e^x	$\int e^x dx = e^x + C$
$\frac{1}{x}$	$\int \frac{1}{x} dx = \ln x + C$
$\sin x$	$\int \sin x dx = -\cos x + C$
$\cos x$	$\int \cos x dx = \sin x + C$
$\sec^2 x$	$\int \sec^2 x dx = \tan x + C$
$\csc^2 x$	$\int \csc^2 x dx = -\cot x + C$
$\sec x \tan x$	$\int \sec x \tan x dx = \sec x + C$
$\csc x \cot x$	$\int \csc x \cot x dx = -\csc x + C$