Differential Equations 9.1

Definition. A differential equation is an equation involving an unknown function and one or more of its derivatives. The **order** of a differential equation is the order of the highest derivative that appears in the equation.

Example.

1.
$$y' = y$$
 If $y = e^x$ then $y' = e^x$ so $y' = y$

The simplest exponential growth equation. The more y you have, the faster it grows—like compound interest or unrestricted population growth.

2.
$$y'' = 0$$
 If $y = mx + b$ then $y'' = 0$ The second derivative being zero means the slope is constant. So y must be a linear function.

This represents motion at constant velocity.

3.
$$y'' = 1$$
 If $y = \frac{1}{z}x^2 + bx + c$ then $y'' = 1$

Constant acceleration—like an object falling under gravity (ignoring air resistance). The solution will be a quadratic function of x.

4.
$$y'' + y = 0$$
 If $y = \sin x$ then $y'' = -\sin x$ so $y'' + y = 0$

This describes simple harmonic motion—systems like a mass on a spring or a pendulum (for small angles). The solution is sinusoidal: $y = \sin x$ or $\cos x$.

5.
$$y'' + 4y = 0$$
 If $y = \sin 2x$ then $y'' = -4\sin 2x$ so $y'' + 4y = 0$ Another harmonic oscillator, but with a faster frequency. Appears when the spring is stiffer or

the object oscillates faster.

6.
$$y' = xy$$
 If $y = e^{\frac{1}{2}x^2}$ then $y' = xe^{\frac{1}{2}x^2} = xy$

This first-order equation says the rate of change of y depends on both x and y. It shows up in problems where growth depends on position, like certain population or physics models.

Definition. To solve a differential equation means to find all functions that satisfy the equation.

Example. Consider the differential equation $y' = x^3$. The general solution is $y = \frac{x^4}{4} + C$, where C is an arbitrary constant.

1

Example. Determine whether the function $y = x + \frac{1}{x}$ is a solution of the given differential equation.

(a)
$$xy' + y = 2x$$

(b)
$$xy'' + 2y' = 0$$

We first compute
$$y' = 1 - \frac{1}{x^2}$$
 and $y'' = \frac{2}{x^3}$

(a)
$$xy' + y = x\left(1 - \frac{1}{x^2}\right) + \left(x + \frac{1}{x}\right)$$

$$= x - \frac{1}{x} + x + \frac{1}{x}$$

$$= 2x \checkmark$$

(b)
$$xy'' + 2y' = x\left(\frac{2}{x^3}\right) + 2\left(1 - \frac{1}{x^2}\right)$$

= $\frac{2}{x^2} + 2 - \frac{2}{x^2}$
= 2 \times

Example. Determine whether the given function is a solution of the differential equation:

$$y = e^{2x}, \qquad y' - 2y = 0$$

- (1) $y' = 2e^{2x}$
- (2) So, $y'-2y = 2e^{2x}-2\cdot e^{2x} = 0$
- 3 Hence $y=e^{2x}$ is a solution to y'-2y

Example. Show that every member of the family of functions

$$y = \frac{1 + ce^t}{1 - ce^t}$$

is a solution of the differential equation

$$y' = \frac{1}{2}(y^2 - 1).$$

Quotient rule

$$y' = \frac{(1-ce^{t})(ce^{t}) - (1+ce^{t})(-ce^{t})}{(1-ce^{t})^{2}} = \frac{ce^{t}-c^{2}e^{2t}+ce^{t}+c^{2}e^{2t}}{(1-ce^{t})^{2}}$$

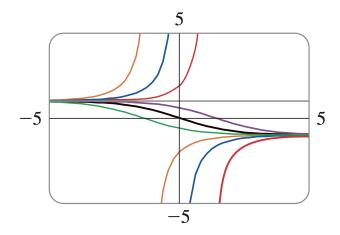
Simplify =
$$\frac{2ce^{t}}{(1-ce^{t})^{2}}$$

Common denominat

$$\frac{1}{2}(y^{2}-1) = \frac{1}{2}\left[\left(\frac{1+ce^{\pm}}{1-ce^{\pm}}\right)^{2}-1\right] = \frac{1}{2}\left[\frac{(1+ce^{\pm})^{2}}{(1-ce^{\pm})^{2}}-\frac{(1-ce^{\pm})^{2}}{(1-ce^{\pm})^{2}}\right]$$

combine
$$\frac{1}{2} \cdot \frac{4 \cdot e^{t}}{(1-\epsilon e^{t})^{2}} = \frac{2 \cdot e^{t}}{(1-\epsilon e^{t})^{2}}$$

Hence, for every value of c, y'= \frac{1}{2}(y^2-1)



In practice, we often care less about finding the whole family of solutions (the *general solution*) and more about finding the specific one that meets a given condition like $y(t_0) = y_0$. This condition is called an **initial condition**, and solving the differential equation with this condition is called an **initial-value problem**.

Visually, an initial condition helps us pick out the one curve from the family of solutions that passes through the point (t_0, y_0) .

Example. Find a solution of the differential equation

$$y' = \frac{1}{2}(y^2 - 1)$$

that satisfies the initial condition y(0) = 2.

From the previous example, we know that

$$y = \frac{1+ce^{t}}{1-ce^{t}}$$

is a solution for all values of c. Substituting t=0 and y=2,

$$2 = \frac{1+ce^{\circ}}{1-ce^{\circ}} = \frac{1+c}{1-c} \Rightarrow 2(1-c) = 1+c \Rightarrow 2-2c = 1+c$$

$$\Rightarrow 1 = 3c$$

$$\Rightarrow c = 1/3$$

The solution to the initial value problem is $y = \frac{1+1/3e^{\frac{1}{2}}}{1-1/3e^{\frac{1}{2}}} = \frac{3+e^{\frac{1}{2}}}{3-e^{\frac{1}{2}}}$

