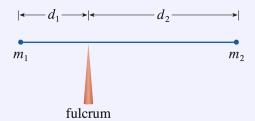
8.3 Center of Mass

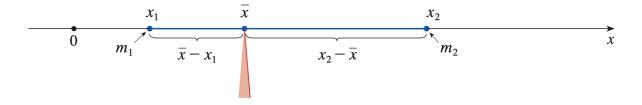
Theorem (Law of the Lever). Consider the situation illustrated below, where two masses m_1 and m_2 are attached to a rod of negligible mass on opposite sides of a fulcrum and at distances d_1 and d_2 from the fulcrum.



The rod will balance if

This is called the Law of the Lever, a fact discovered by Archimedes.

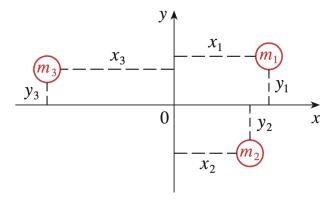
Example. Suppose that the rod lies along the x-axis with m_1 at x_1 and m_2 at x_2 . What is the center of mass \overline{x} ?



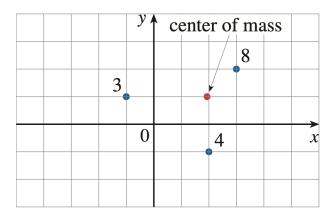
Question. Where is the center of mass \overline{x} located in terms of moments?

Question. Consider a system of n particles with masses m_1, m_2, \ldots, m_n , located at the points x_1, x_2, \ldots, x_n on the x-axis. Where is the center of mass located?

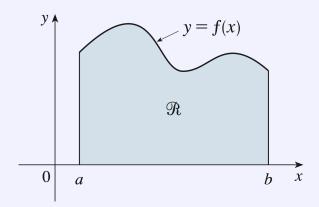
Example. Consider a system of n particles with masses m_1, m_2, \ldots, m_n located at the points $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$ in the xy-plane. Where is the center of mass \overline{x} located?



Example. Find the moments and center of mass of the system of objects that have masses 3, 4, and 8 at the points (-1,1),(2,-1), and (3,2), respectively.



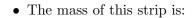
Theorem. Let \mathscr{R} be a region in the plane occupied by a flat plate (lamina) with uniform density ρ . Suppose the region \mathscr{R} is bounded by the curve y = f(x), where f(x) gives the height of the region at each point x along the horizontal axis. Let a and b be the horizontal bounds of the region \mathscr{R} , i.e., \mathscr{R} lies between the vertical lines x = a and x = b.

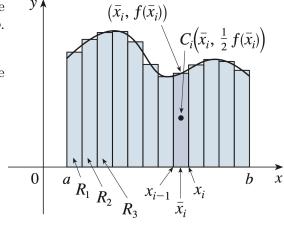


The center of mass of the plate, also called the centroid of R, with area A, is located at the point $(\overline{x}, \overline{y})$, where

Note: If the plate has uniform density ρ , then its center of mass coincides with the centroid of R. If the density is not uniform, the center of mass is typically located at a different point.

- For the x-coordinate of the center of mass (\overline{x}) , divide the region into n subintervals from x=a to x=b. Each subinterval has width $\Delta x = \frac{b-a}{n}$.
- Choose sample points \overline{x}_i in each subinterval to be the midpoint of the subinterval.
- For each strip at \overline{x}_i , the area is:

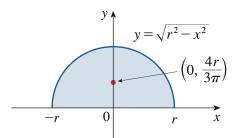




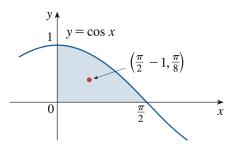
• The moment of this strip about the y-axis is:

ullet The total moment of all strips about the y -axis is:	
• As the number of subintervals n goes to infinity (and $\Delta x \to 0$), this sum becomes the intervals	gral:
ullet The x -coordinate of the center of mass is the weighted average of the moments:	
• For the y-coordinate of the center of mass (\overline{y}) , we need to calculate the moment of each swith respect to the x-axis. This is the "weighted distance" of the strip to the x-axis. Funiform strip, this is taken from the center of the strip. The distance of the center of strip to the x-axis is:	or a
ullet The moment about the x -axis for each strip is then:	
ullet The total moment of all strips about the x -axis is:	
• Taking the limit as $n \to \infty$, this sum becomes the integral:	
ullet The y-coordinate of the center of mass is:	

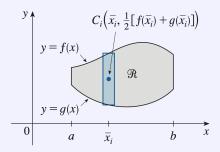
Example. Find the center of mass of a semicircular plate of radius r with uniform density.



Example. Find the centroid of the region in the first quadrant bounded by the curves $y = \cos x$, y = 0, and x = 0.



Theorem. Suppose the region $\mathscr R$ lies between two curves y=f(x) and y=g(x), where $f(x)\geq g(x)$.



The centroid of \mathscr{R} is $(\overline{x}, \overline{y})$, where

$$\overline{x} = \frac{1}{A} \int_a^b x [f(x) - g(x)] dx$$

$$\overline{y} = \frac{1}{A} \int_a^b \frac{1}{2} \left\{ [f(x)]^2 - [g(x)]^2 \right\} dx$$

Example. Find the centroid of the region bounded by the line y = x and the parabola $y = x^2$.

