
8.3 Center of Mass

Theorem (Law of the Lever). Consider the situation illustrated below, where two masses
m1 and m2 are attached to a rod of negligible mass on opposite sides of a fulcrum and at
distances d1 and d2 from the fulcrum.

The rod will balance if

This is called the Law of the Lever, a fact discovered by Archimedes.

Example. Suppose that the rod lies along the x-axis with m1 at x1 and m2 at x2. What is the
center of mass x?

Question. Where is the center of mass x located in terms of moments?
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Question. Consider a system of n particles with masses m1,m2, . . . ,mn, located at the points
x1, x2, . . . , xn on the x-axis. Where is the center of mass located?

Example. Consider a system of n particles with masses m1,m2, . . . ,mn located at the points
(x1, y1), (x2, y2), . . . , (xn, yn) in the xy-plane. Where is the center of mass x located?
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My is the total weighted distance to the y-axis .
It measures the

tendency of the system to rotate about the y-axis.

·
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· Mx measures the tendency of the system to rotate about the x-axis .



Example. Find the moments and center of mass of the system of objects that have masses 3, 4,
and 8 at the points (�1, 1), (2,�1), and (3, 2), respectively.
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My = 3( - 1) + 4(z) + 8(3) = 29

Mx = 3(1) + 4(-x + 8(z) = 15

m = 3 + 4 + 8 = 15

X===

Center of mass is (29115
,
11



Theorem. Let R be a region in the plane occupied by a flat plate (lamina) with uniform
density ⇢. Suppose the region R is bounded by the curve y = f(x), where f(x) gives the
height of the region at each point x along the horizontal axis. Let a and b be the horizontal
bounds of the region R, i.e., R lies between the vertical lines x = a and x = b.

The center of mass of the plate, also called the centroid of R, with area A, is located at the
point (x, y), where

Note: If the plate has uniform density ⇢, then its center of mass coincides with the centroid
of R. If the density is not uniform, the center of mass is typically located at a di↵erent point.

• For the x-coordinate of the center of mass (x), divide
the region into n subintervals from x = a to x = b.
Each subinterval has width �x = b�a

n .

• Choose sample points xi in each subinterval to be
the midpoint of the subinterval.

• For each strip at xi, the area is:

• The mass of this strip is:

• The moment of this strip about the y-axis is:
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• The total moment of all strips about the y-axis is:

• As the number of subintervals n goes to infinity (and �x ! 0), this sum becomes the integral:

• The x-coordinate of the center of mass is the weighted average of the moments:

• For the y-coordinate of the center of mass (y), we need to calculate the moment of each strip
with respect to the x-axis. This is the “weighted distance” of the strip to the x-axis. For a
uniform strip, this is taken from the center of the strip. The distance of the center of the
strip to the x-axis is:

• The moment about the x-axis for each strip is then:

• The total moment of all strips about the x-axis is:

• Taking the limit as n ! 1, this sum becomes the integral:

• The y-coordinate of the center of mass is:
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Example. Find the center of mass of a semicircular plate of radius r with uniform density.
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Final Answer : (0,



Example. Find the centroid of the region in the first quadrant bounded by the curves y = cosx,
y = 0, and x = 0.
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Final Answer : (1, )



Theorem. Suppose the region R lies between two curves y = f(x) and y = g(x), where
f(x) � g(x).

The centroid of R is (x, y), where
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Example. Find the centroid of the region bounded by the line y = x and the parabola y = x2.

8

A = (jx -xidx = (x - 1) = (2 - 5) - (00) = 5
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Final Answer : (2
, 5)


