8.3 Center of Mass

Theorem (Law of the Lever). Consider the situation illustrated below, where two masses
mq and my are attached to a rod of negligible mass on opposite sides of a fulcrum and at
distances dq; and ds from the fulcrum.
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The rod will balance if

m, dl = m, dl

This is called the Law of the Lever, a fact discovered by Archimedes.

Example. Suppose that the rod lies along the z-axis with m; at 1 and me at xo. What is the
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Question. Where is the center of mass T located in terms of moments?
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Question. Consider a system of n particles with masses mi, ma, ..., my,, located at the points

T1,T9,...,T, on the x-axis. Where is the center of mass located?
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Example. Consider a system of n particles with masses my, mo,...,m, located at the points
(x1,y1), (2,Y2), - -, (Tn, yn) in the xy-plane. Where is the center of mass T located?
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Example. Find the moments and center of mass of the system of objects that have masses 3, 4,
and 8 at the points (—1,1),(2,—1), and (3, 2), respectively.
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Theorem. Let #Z be a region in the plane occupied by a flat plate (lamina) with uniform
density p. Suppose the region # is bounded by the curve y = f(z), where f(x) gives the
height of the region at each point x along the horizontal axis. Let a and b be the horizontal
bounds of the region Z, i.e., Z lies between the vertical lines + = a and = = b.
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The center of mass of the plate, also called the centroid of R, with area A, is located at the
point (Z,7), where

— | b _ [ b 2
X = T J; x F6Ndx  and 9= A Sm ’\i Y.H’Ql Jx

Note: If the plate has uniform density p, then its center of mass coincides with the centroid
of R. If the density is not uniform, the center of mass is typically located at a different point.
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e The moment of this strip about the y-axis is:
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The total moment of all strips about the y-axis is:
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As the number of subintervals n goes to infinity (and Az — 0), this sum becomes the integral:
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The z-coordinate of the center of mass is the weighted average of the moments:
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For the y-coordinate of the center of mass (¥), we need to calculate the moment of each strip
with respect to the x-axis. This is the “weighted distance” of the strip to the z-axis. For a
uniform strip, this is taken from the center of the strip. The distance of the center of the
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The moment about the z-axis for each strip is then:
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The total moment of all strips about the z-axis is:
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Taking the limit as n — oo, this sum becomes the integral:
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Example. Find the center of mass of a semicircular plate of radius r with uniform density.
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Example. Find the centroid of the region in the first quadrant bounded by the curves y = cos z,

y =20, and x = 0.
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f(z) > g(z).

Theorem. Suppose the region Z lies between two curves y = f(x) and y = g(z), where

The centroid of Z is (Z,y), where
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Example. Find the centroid of the region bounded by the line y = x and the parabola y = z2.
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