7.4 Integration of Rational Functions by Partial Fractions

Question. What is the goal of a partial fraction decomposition?

Question. What is a proper rational function? What is an improper rational function?

Question. Partial fractions only apply to proper fractions. What if $\frac{P(x)}{Q(x)}$ is improper?

Theorem (Partial Fraction Decomposition). Any proper rational function $\frac{P(x)}{Q(x)}$ can be rewritten as a sum of simpler fractions, called partial fractions. The decomposition is built from the following components based on the factors of Q(x):

1. **Distinct Linear Factors:** For each distinct linear term (a_1x+b_1) in Q(x), the partial fraction decomposition includes a term of the form:

$$\frac{A_1}{a_1x + b_1}.$$

2. Repeated Linear Factors: For each repeated linear factor $(a_1x + b_1)^m$ in Q(x), the partial fraction decomposition includes terms of the form:

$$\frac{A_1}{a_1x+b_1} + \frac{A_2}{(a_1x+b_1)^2} + \dots + \frac{A_m}{(a_1x+b_1)^m}.$$

3. Irreducible Quadratic Factors: For each irreducible quadratic term $(a_1x^2+b_1x+c_1)$ in Q(x), where $b_1^2-4a_1c_1<0$, the partial fraction decomposition includes a term of the form:

$$\frac{A_1x + B_1}{a_1x^2 + b_1x + c_1}.$$

4. Repeated Irreducible Quadratic Factors: For each repeated irreducible quadratic factor $(a_1x^2 + b_1x + c_1)^m$ in Q(x), the partial fraction decomposition includes terms of the form:

$$\frac{A_1x + B_1}{a_1x^2 + b_1x + c_1} + \frac{A_2x + B_2}{(a_1x^2 + b_1x + c_1)^2} + \dots + \frac{A_mx + B_m}{(a_1x^2 + b_1x + c_1)^m}.$$

1

Example. Evaluate the partial fraction decomposition of $\frac{3x^2 + 5x + 2}{(x-1)(x+2)(x-3)}$.

Example. Evaluate the partial fraction decomposition of $\frac{4x^2+7}{(x+1)^2(x-2)}$.

Example. Evaluate the partial fraction decomposition of $\frac{2x^2 + 3x + 1}{(x^2 + x + 1)(x - 1)}$.

Example. Evaluate the partial fraction decomposition of $\frac{5x^3 + 2x^2 + x + 4}{(x^2 + 1)^2(x - 2)}$.

Procedure to Integrate Rational Functions by Partial Fractions

1. Check if the rational function is proper:

- A rational function $\frac{P(x)}{Q(x)}$ is proper if $\deg(P) < \deg(Q)$.
- If $deg(P) \ge deg(Q)$, perform polynomial long division to express it as:

$$\frac{P(x)}{Q(x)} = S(x) + \frac{R(x)}{Q(x)},$$

where deg(R) < deg(Q).

2. Factor the denominator Q(x):

- Fully factor Q(x) into linear and irreducible quadratic factors.
- For example: $Q(x) = (x a_1)(x a_2)^2(x^2 + bx + c)$.

3. Set up the partial fraction decomposition:

- Distinct Linear Factors
- Repeated Linear Factors
- Irreducible Quadratic Factors.
- Repeated Irreducible Quadratic Factors.

4. Determine the coefficients:

- Multiply through by the denominator Q(x) to eliminate fractions.
- Expand and collect terms to form a polynomial equation.
- Solve for the unknown coefficients by equating coefficients of corresponding powers of x.

5. Integrate each term:

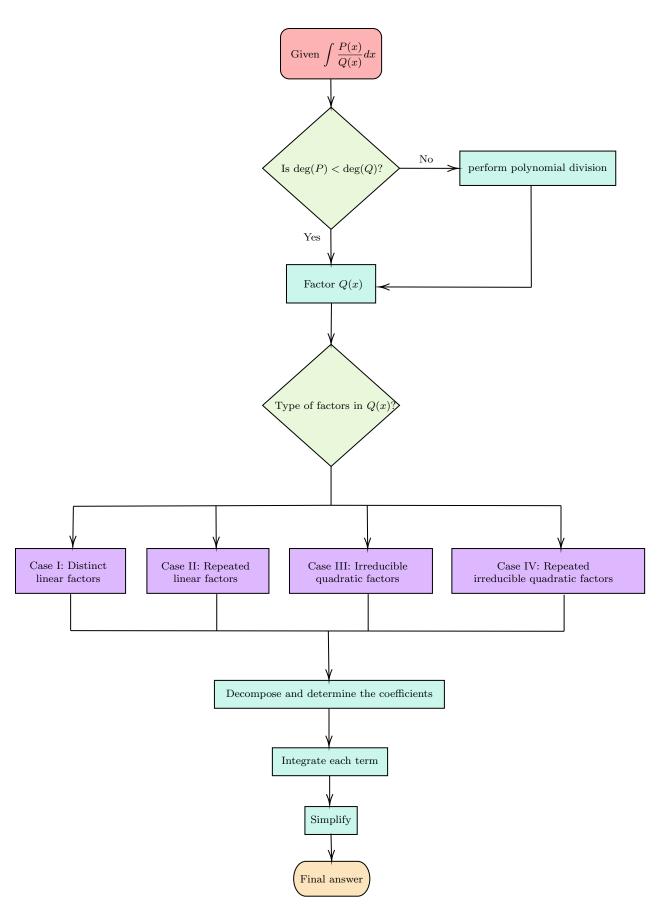
• Use basic integration formulas for linear and quadratic terms:

$$\int \frac{1}{x-a} dx = \ln|x-a| + C, \quad \int \frac{Ax+B}{x^2+bx+c} dx = \text{(substitution or arctangent)}.$$

• Combine the results.

6. Simplify the final answer:

- Use logarithmic properties to combine terms where possible.
- Ensure the answer is in its simplest form.



Example. Evaluate $\int \frac{x^2 + 2x - 1}{2x^3 + 3x^2 - 2x} \, dx$.

Example. Find $\int \frac{dx}{x^2 - 9}$.

Example. Find $\int \frac{x^4 - 2x^2 + 4x + 1}{x^3 - x^2 - x + 1} dx$.

Example. Evaluate $\int \frac{2x^2 - x + 4}{x^3 + 4x} dx$.

Example. Evaluate $\int \frac{4x^2 - 3x + 2}{4x^2 - 4x + 3} dx$.

Example. Write out the form of the partial fraction decomposition of the function

$$\frac{x^3 + x^2 + 1}{x(x-1)(x^2 + x + 1)(x^2 + 1)^3}$$

Example. Should we use partial fractions to solve $\int \frac{x^2+1}{x(x^2+3)} dx$?

Example. Evaluate $\int \frac{1 - x + 2x^2 - x^3}{x(x^2 + 1)^2} dx$.