7.2 Trigonometric Integrals

Integrals of Powers of Sine and Cosine

We begin by considering integrals in which the integrand is a power of sine, a power of cosine, or a product of these.

Strategy for Evaluating $\int \sin^m x \cos^n x \, dx$:

- 1. If the power of cosine is odd, save one cosine factor and use $\cos^2 x = 1 \sin^2 x$ to express the remaining factors in terms of sine. Substitute $u = \sin x$.
- 2. If the power of sine is odd, save one sine factor and use $\sin^2 x = 1 \cos^2 x$ to express the remaining factors in terms of cosine. Substitute $u = \cos x$.
- 3. If the powers of both sine and cosine are even, use the half-angle identities:

$$\sin^2 x = \frac{1 - \cos(2x)}{2}, \quad \cos^2 x = \frac{1 + \cos(2x)}{2}.$$

4. It is sometimes helpful to use the identity $\sin x \cos x = \frac{1}{2}\sin(2x)$.

Example. Evaluate $\int \cos^3 x \, dx$.

We can use the identity
$$\cos^2 x = 1 - \sin^2 x$$
:

$$\int \cos^3 x \, dx = \int \cos x \cdot \cos^2 x \, dx = \int \cos x \cdot (1-\sin^2 x) \, dx$$

$$\int (1-u^2) du = u - \frac{u^3}{3} + C$$

$$= \sin x - \frac{\sin^3 x}{3} + C$$

Example. Find $\int \sin^5 x \cos^2 x \, dx$.

We could convert $\cos^2 x$ to $1-\sin^2 x$, but this gives an expression in terms of $\sin x$ with no extra $\cos x$ factor. Instead, we save one $\sin x$ factor and convert the remaining $\sin x$ factors to $\cos x$.

$$\int \sin^5 x \cos^2 x \, dx = \int \sin^4 x \cdot \sin x \cdot \cos^2 x \, dx$$

$$= \int (\sin^2 x)^2 \cdot \sin x \cdot \cos^2 x \, dx$$

$$= \int (1 - \cos^2 x)^2 \cdot \sin x \cdot \cos^2 x \, dx$$

Let $u = \cos x$. Then $du = -\sin x dx$. The integral becomes

$$-\int (1-u^{2})^{2} \cdot u^{2} du = -\int (1-2u^{2}+u^{4}) \cdot u^{2} du$$

$$= -\int u^{2}-2u^{4}+u^{6} du$$

$$= -\left(\frac{u^{3}}{3}-\frac{2u^{5}}{5}+\frac{u^{7}}{7}\right)+C$$

$$= -\left(\frac{\cos^{3}x}{3}-\frac{2\cos^{5}x}{5}+\frac{\cos^{7}x}{7}\right)+C$$

Example. Evaluate $\int_0^{\pi} \sin^2 x \, dx$.

We can use the half angle identity
$$\sin^2 x = \frac{1-\cos(2x)}{2}$$
.

$$\int_0^{\pi} \sin^2 x \, dx = \int_0^{\pi} \frac{1-\cos(2x)}{2} \, dx$$

$$= \frac{1}{2} \int_0^{\pi} 1-\cos(2x) \, dx$$

$$= \frac{1}{2} \left[x - \frac{1}{2} \sin(2x) \right]_0^{\pi}$$

$$= \frac{1}{2} \left[(\pi - 0) - (0 - 0) \right]$$

$$= \pi$$

Example. Find $\int \sin^4 x \, dx$.

$$\int \sin^4 x \, dx = \int (\sin^2 x)^2 \, dx$$

$$= \int \left(\frac{1 - \cos(2x)}{2}\right)^2 \, dx$$

$$= \frac{1}{4} \int (-2\cos(2x) + \cos^2(2x)) \, dx$$

We can use the half angle identify
$$\cos^2(2x) = \frac{1+\cos(4x)}{2}$$

$$= \frac{1}{2} \left(1+\cos(4x)\right)$$

$$= \frac{1}{4} \int 1 - 2\cos(2x) + \frac{1}{2} (1 + \cos(4x)) dx$$

$$= \frac{1}{4} \int \frac{3}{2} - 2\cos(2x) + \frac{1}{2} \cos(4x) dx$$

$$= \frac{1}{4} \left(\frac{3}{2} x - \sin(2x) + \frac{1}{8} \sin(4x) \right) + C$$

Integrals of Powers of Secant and Tangent

Now we consider integrals in which the integrand is a power of tangent, a power of secant, or a product of these.

Strategy for Evaluating $\int \tan^m x \sec^n x \, dx$

$$\frac{\cos^2 x + \sin^2 x = 1}{\cos^2 x} + \frac{\sin^2 x}{\cos^2 x} = \frac{1}{\cos^2 x}$$

1. The derivatives of tangent and secant:

$$\frac{d}{dx}[\tan x] = \sec^2 x, \quad \frac{d}{dx}[\sec x] = \sec x \tan x. \implies 1 + \frac{1}{2} = \sec^2 x$$

- 2. If the power of secant is even, save a factor of $\sec^2 x$ and use $\sec^2 x = 1 + \tan^2 x$ to rewrite the remaining powers of secant in terms of tangent.
- 3. If the power of tangent is odd, save a factor of $\sec x \tan x$ and use $\tan^2 x = \sec^2 x 1$ to rewrite the remaining powers of tangent in terms of secant.

Example. Evaluate $\int \tan^6 x \sec^4 x \, dx$.

The power of secant is even. Save a factor of sec?x and write the rest in terms of tangent.

$$\int \tan^6 x \sec^4 x \, dx = \int \tan^6 x \cdot \sec^2 x \cdot \sec^2 x \, dx$$

$$= \int \tan^6 x \cdot (1 + \tan^2 x) \cdot \sec^2 x \, dx$$

Let u = tanx. Then du = Sec2x dx. We obtain

$$\int u^{6} \cdot (1 + u^{2}) du = \int u^{6} + u^{8} du$$

$$= \frac{u^{7}}{7} + \frac{u^{9}}{9} + C$$

$$= \frac{\tan^{7} x}{7} + \frac{\tan^{9} x}{9} + C$$

Example. Find $\int \tan^5 \theta \sec^7 \theta \, d\theta$.

The power of tangent is odd. Save a factor of secont.

$$\int \tan^{5} \theta \sec^{7} \theta d\theta = \int \tan^{4} \theta \sec^{6} \theta \cdot \sec \theta \tan \theta d\theta$$

$$= \int (\tan^{2} \theta)^{2} \cdot \sec^{6} \theta \cdot \sec \theta \tan \theta d\theta$$

$$= \int (\sec^{2} \theta - 1)^{2} \cdot \sec^{6} \theta \cdot \sec \theta \tan \theta d\theta$$

Let u = Sec 0. Then du = Sec 9 ton 0 19

$$= \int (u^{2}-1)^{2} \cdot u^{6} du$$

$$= \int (u^{4}-2u^{2}+1) \cdot u^{6} du$$

$$= \int u^{10}-2u^{8}+u^{6} du$$

$$= \frac{u^{11}}{11}-\frac{2u^{9}}{9}+\frac{u^{7}}{7}+C$$

$$= \frac{\sec^{11}\theta}{11}-\frac{2\sec^{1}\theta}{9}+\frac{\sec^{1}\theta}{7}+C$$

Remark. In some cases, the guidelines for integrating powers of $\tan x$ and $\sec x$ are not as straightforward. We may need to use trigonometric identities, integration by parts, or creative problem-solving techniques. Two important integrals to remember for these cases are:

$$\int \tan x \, dx = \ln|\sec x| + C$$
 and
$$\int \sec x \, dx = \ln|\sec x + \tan x| + C.$$

Example. Find $\int \tan^3 x \, dx$.

We can't pull out a
$$\sec^2 x$$
 term or a $\sec x + \cot x + \cot x$.

Rewrite $\tan^3 x$ as $\tan x \cdot \tan^2 x$ and use $\tan^2 x = \sec^2 x - 1$

$$\int \tan^3 x \, dx = \int \tan x \cdot \tan^2 x \, dx$$

$$= \int \tan x \cdot (\sec^2 x - 1) \, dx$$

$$= \int \tan x \cdot \sec^2 x - \tan x \, dx$$

$$u = \tan x$$

$$du = \sec^2 x$$

$$\int u \, du = \frac{1}{2}u^2$$

$$= \frac{1}{2} \tan^2 x - \ln|\sec x| + C$$

Example. Find $\int \sec^3 x \, dx$.

1) We can rewrite this as

$$\int \sec^2 x \cdot \sec x \, dx = \int (1 + \tan^2 x) \cdot \sec x \, dx = \int \sec x \, dx + \int \sec x \cdot \tan^2 x \, dx$$

$$\int \sec x \cdot \tan^2 x \, dx = \int \sec x \, \tan x - \int \int \sec^3 x \, dx$$

$$\int \sec^3 x \cdot \sec^3 x \, dx = \int \cot^3 x \, dx$$

$$\int \int \sec^3 x \, dx = \int \cot^3 x \, dx$$

$$\int \int \cot^3 x \, dx = \int \cot^3 x \, dx$$

$$\int \int \cot^3 x \, dx = \int \cot^3 x \, dx$$

$$\int \int \cot^3 x \, dx = \int \cot^3 x \, dx$$

$$\int \int \cot^3 x \, dx = \int \cot^3 x \, dx$$

$$\int \int \cot^3 x \, dx = \int \cot^3 x \, dx$$

$$\int \int \cot^3 x \, dx = \int \cot^3 x \, dx$$

$$\int \int \cot^3 x \, dx = \int \cot^3 x \, dx$$

$$\int \int \cot^3 x \, dx = \int \cot^3 x \, dx$$

$$\int \int \cot^3 x \, dx = \int \cot^3 x \, dx$$

$$\int \int \cot^3 x \, dx = \int \cot^3 x \, dx$$

$$\int \int \cot^3 x \, dx = \int \cot^3 x \, dx$$

$$\int \int \cot^3 x \, dx = \int \cot^3 x \, dx$$

$$\int \int \cot^3 x \, dx = \int \cot^3 x \, dx$$

$$\int \int \cot^3 x \, dx = \int \cot^3 x \, dx$$

$$\int \int \cot^3 x \, dx = \int \cot^3 x \, dx$$

$$\Rightarrow \int \sec^3 dx = \frac{1}{2} \left[\ln \left| \sec x \tan x \right| + \sec x \tan x \right] + C$$

Alternatively, use integration by ports on
$$\int \sec^3 x \, dx$$
. $u = \sec x$ $v = \tan x$

$$\frac{du = \sec x}{du = \sec x + \cot x}$$

$$\frac{dv}{dv} = \sec^2 x \, dx$$

$$\int \sec^{3}x \, dx = \sec x \cdot \tan x - \int \tan^{2}x \sec x \, dx$$

$$= \sec x \cdot \tan x - \int (\sec^{2}x - 1) \cdot \sec x \, dx$$

$$= \sec x \cdot \tan x - \int \sec^{3}x - \sec x \, dx$$

$$= \sec x \cdot \tan x - \int \sec^{3}x \, dx + \int \sec x \, dx$$

Solve for Sec3x:

$$2 \int \sec^{3}x \, dx = \sec x \tan x + \int \sec x \, dx$$

$$\int \sec^{3}x \, dx = \frac{1}{2} \left[\sec x + \tan x + \ln \left| \sec x + \tan x \right| \right] + C$$

$$\int \sec^4 x \, dx = \int (\sec^2 x)(\sec^2 x) \, dx$$

$$= \int (\tan^2 x + 1)(\sec^2 x) \, dx$$

$$= \int u^2 + 1 \, du$$

$$= \frac{1}{3}u^3 + u + C$$

$$= \frac{1}{3}\tan^3 x + \tan x + C$$

$$u = \tan x$$
$$du = \sec^2 x \, dx$$

$$\int \tan^2 x \sec^4 x \, dx = \int \tan^2 x (\sec^2 x) (\sec^2 x) \, dx$$

$$= \int \tan^2 x (\tan^2 x + 1) (\sec^2 x) \, dx$$

$$= \int u^2 (u^2 + 1) \, du$$

$$= \int u^4 + u^2 \, du$$

$$= \frac{1}{5} u^5 + \frac{1}{3} u^3 + C$$

$$= \frac{1}{5} \tan^5 x + \frac{1}{3} \tan^3 x + C$$

$$u = \tan x$$
$$du = \sec^2 x \, dx$$

$$\int \tan^3 x \sec x \, dx = \int \tan^2 x (\tan x \sec x) \, dx$$

$$= \int (\sec^2 x - 1) (\tan x \sec x) \, dx$$

$$= \int u^2 - 1 \, du$$

$$= \frac{1}{3} u^3 - u + C$$

$$= \frac{1}{3} \sec^3 x - \sec x + C$$

$$u = \sec x$$
$$du = \sec x \tan x \, dx$$