6.5 Average Value of a Function
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Theorem. The average value of f on the interval [a,b] is favg = / f(z) dx.
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e The average of n numbers x1, x2,...,x, is given by:
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e For functions, the idea of “average” extends to infinitely many values (since a function takes
on a value at every point in the interval [a, b]). We use an integral to represent the total sum.
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e The average value requires dividing the total sum by the “number of values.” For functions
over [a, b], the equivalent is dividing by the length of the interval b — a.
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Example. Find the average value of the function f(z) =1+ 2% on the interval [—1, 2].
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Theorem (The Mean Value Theorem for Integrals). If f is continuous on [a, b], then there
exists a number ¢ in [a, b] such that
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that is, f: f(x)dz = f(c)(b—a)
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Example. Determine the value of ¢ that satisfies the conclusion of the Mean Value Theorem for
the function f(x) = 1 + 22 on the interval 1, 2].
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Example. Show that the average velocity of a car over a time interval [¢, 5] is the same as the
average of its velocities during the trip.
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Example (Monitoring Traffic Flow). Traffic engineers are analyzing vehicle speeds on a 6-mile
stretch of highway during a 12-hour observation period. The speed of traffic (in miles per hour) at
time t (in hours) is modeled as:
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Question. Knowing the average speed helps ensure that traffic flows smoothly and within safe
limits, preventing dangerous speed fluctuations. What is the average speed of vehicles over the
12-hour period?
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Question. At what times does the instantaneous speed match the average speed? These moments
indicate when traffic flow is most representative of overall conditions, helping engineers optimize

traffic signals and safety measures.
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