6.4 Work

Definition. In physics, a **force** is defined as a push or pull on an object. For example, a horizontal push of a book across a table, or the downward pull of gravity on a ball. Mathematically, if an object moves along a straight line with position function s(t), the force F acting on the object is given by Newton's Second Law of Motion:

$$F = ma = m\frac{d^2s}{dt^2},$$

where m is the mass of the object, and a is the acceleration of the object.

Definition. Work is defined as the product of the force F acting on an object and the distance d the object moves:

$$W = Fd$$
 (work = force × distance).

• If F is measured in newtons (N) and d in meters (m), W is measured in joules (J):

$$1 J = 1 N \cdot m$$
.

• If F is measured in pounds (lb) and d in feet (ft), W is measured in foot-pounds (ft-lb):

1 ft-lb
$$\approx 1.36$$
 J.

Example.

- (a) How much work is done in lifting a 1.2-kg book off the floor to put it on a desk that is 0.7 m high? Use the fact that the acceleration due to gravity is $g = 9.8 \text{ m/s}^2$.
- (b) How much work is done in lifting a 20-lb weight 6 ft off the ground? Here, a force

(a)
$$W = F \cdot d$$

 $= (m \cdot j) \cdot d$
 $= (1.2)(9.8)(0.7)$
 $= 8.232 \text{ J}$
(b) $W = F \cdot d$
 $= 20 \cdot 6$
 $= 120 \text{ ft-16}$

When the force is constant, work is simply the product of force and distance: $W = F \cdot d$. What if the force is not constant? How can we calculate the work done over an interval [a, b]?

- Approximate the work done over a small subinterval:
 - Divide [a, b] into n subintervals of equal width Δx .
 - Let x_0, x_1, \ldots, x_n be the endpoints of these subintervals.
 - Choose a sample point x_i^* in the *i*th subinterval $[x_{i-1}, x_i]$.
 - The force at x_i^* is $f(x_i^*)$, so the work W_i done over the interval $[x_{i-1}, x_i]$ is:

• Approximate the total work over the entire interval [a, b].

$$W \approx \sum_{i=1}^{r} f(x_i^*) \cdot \Delta x$$

• How can we calculate the exact total work for a variable force?

$$W = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}^{*}) \cdot \Delta x = \int_{a}^{b} f(x) dx$$

$$\det \cdot of integel$$

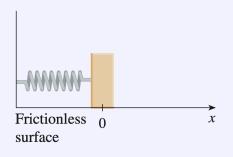
Example. When a particle is located a distance x feet from the origin, a force of $x^2 + 2x$ pounds acts on it. How much work is done in moving it from x = 1 to x = 3?

$$W = \int_{1}^{3} x^{2} + 2x \, dx = \left[\frac{x^{3}}{3} + x^{2} \right]_{1}^{3} = \frac{50}{3} \text{ ft-1b}$$

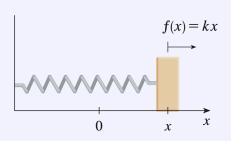
Theorem (Hooke's Law). The force required to maintain a spring stretched x units beyond its natural length is proportional to x:

$$f(x) = kx$$

where k is a positive constant called the spring constant. Hooke's Law holds provided that x is not too large.



(a) Natural position of spring



(b) Stretched position of spring

Example. A force of 40 N is required to hold a spring that has been stretched from its natural length of 10 cm to a length of 15 cm. How much work is done in stretching the spring from 15 cm to 18 cm?

- · The spring is stretched by 5cm = 0.05 m from its natural length
- By Hooke's Law, f(x) = kx. Since f(0.05) = 40 N, we have $f(0.05) = k \cdot 0.05 \implies k = \frac{f(0.05)}{0.05} = \frac{40}{0.05} = 800$
- · Hence, f(x) = 800x.
- The interval of interest corresponds to stretching the spring from $15 \, \text{cm} = 0.15 \, \text{m}$ to $18 \, \text{cm} = 0.18 \, \text{m}$. This means that x ranges from $0.05 \, \text{m}$ to $0.08 \, \text{m}$ (relative to resting position)

$$W = \int_{0.05}^{0.08} f(x) dx = \int_{0.05}^{0.08} 800x dx = 800 \left[\frac{x^2}{z} \right]_{0.05}^{0.08} = 1.56 J$$

General Strategy for Solving Work Problems

- 1. Understand the Physical Setup
 - Identify the object/system involved (e.g., tank, spring, rope).
 - Determine the motion or action taking place (e.g., lifting, stretching, pumping).
 - Gather all relevant dimensions, forces, and physical constants (e.g., gravitational constant g, density of the material).
- 2. Define a Coordinate System:
 - Choose a coordinate system that simplifies the problem.
 - Specify the variable of integration (e.g., height x measured from a reference point).
 - Clearly define the bounds of the motion (e.g., from x = a to x = b).
- 3. Divide the Object/System into Small Pieces:
 - Divide the system (e.g., water in a tank, a rope) into thin slices or segments.
 - Represent each segment by a point (e.g., x^*) to approximate force and distance.
 - Relate dimensions of the slices (e.g., radius or volume) to the integration variable.
- 4. Write an Expression for the Force on Each Segment:
 - Relate the force to the context of the problem:
 - For a spring: Use Hooke's Law, f(x) = kx.
 - For gravity: Use f = mg, where m depends on the density and volume.
 - Use any geometric relationships (e.g., similar triangles) to express quantities in terms of the integration variable.
- 5. Write an Expression for the Work on Each Segment:
 - Work for each segment is $W_i = F_i \cdot \text{distance}$.
 - Substitute the expressions for force and distance into the formula.
- 6. Sum the Work Over All Segments:
 - Approximate the total work as a Riemann sum:

$$W \approx \sum_{i=1}^{n} F(x_i^*) \cdot \operatorname{distance}(x_i^*) \cdot \Delta x.$$

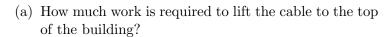
- 7. Convert the Sum to an Integral:
 - Take the limit as $n \to \infty$ to find the exact work:

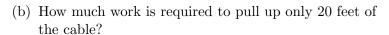
$$W = \int_a^b F(x) \cdot x \, dx.$$

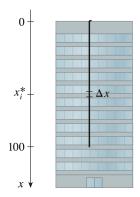
4

• Verify that the units (e.g., joules for work) are correct.

Example. A 200-lb cable is 100 ft long and hangs vertically from the top of a tall building.







Part (a):

1. Understand the Physical Setup

• The cable hangs vertically from the top of a building.

• The cable weighs 200 lb and is 100 ft long.

• The weight per unit length is $\frac{200}{100} = 2 \text{ lb/ft.}$

2. Define a Coordinate System

Let x represent the distance from the top of the building

3. Divide the Cable into Small Pieces

. Divide the cable into small parts, each of length Δx

. The weight of each part is approximately $2\Delta \times 1b$

4. Write an Expression for the Force on Each Segment

 $F_i = 2\Delta x$ (force = weight)

5. Write an Expression for the Work on Each Segment

Let xi be a sample point in the ith subinterval representing the small segment

$$W_i = F_i \cdot x_i^* = 2x_i^* \Delta x$$

6. Sum the Work Over All Segments

the Work Over All Segments

$$W = \lim_{N \to \infty} \sum_{i=1}^{N} 2x_i^{*} \Delta x_i = \int_{0}^{\infty} 2x_i dx_i$$

7. Simplify and Solve the Integral

$$W = \int_{0}^{\infty} 2x \, dx = \left[x^{2}\right]_{0}^{\infty} = 10,000 \text{ ft-16}$$

Part (b):

1. The work required to move the top 20 ft of cable to the top of the building is computed in the same way as in part (a):

$$W_1 = \int_0^{20} 2x \, dx = \left[x^2 \right]_0^{20} = 400 \, \text{fl-lb}$$

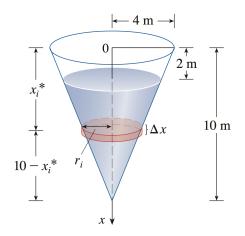
2. The work required to lift the remaining 80 feet of cable by 20 feet is:

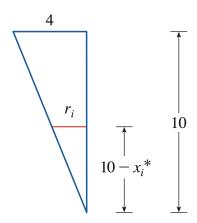
The lower 80ft of the cable weighs
$$80.2 = 160 \text{ lb}$$

This portion is lifted uniformly by 20 ft, so $W_2 = 160.20 = 3200 \text{ ft-1b}$

3. The total work is:

Example. A tank has the shape of an inverted circular cone with a height of 10 m and a base radius of 4 m. It is filled with water to a height of 8 m. Find the work required to empty the tank by pumping all of the water to the top of the tank. (The density of water is 1000 kg/m^3 .)

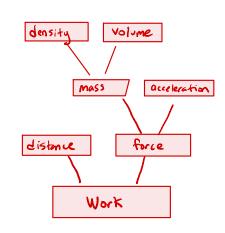




- 1. Understand the Physical Setup
 - The tank is an inverted circular cone.
 - The height of the tank is 10 m, and the base radius is 4 m.
 - The tank is filled with water up to a height of 8 m.
 - Water must be pumped to the top of the tank.
 - The density of water is 1000 kg/m³, and the acceleration due to gravity is $g = 9.8 \text{ m/s}^2$.
- 2. Define a Coordinate System

Measure depth from the top of the tenk, where x=0The water lies between depths of x=2 and x=10

- 3. Divide the Object/System into Small Pieces
 - · Divide [2,10] into subintervals so that the water is divided into thin horizontal layers of thickness sx
 - · Approximate the volume of each layer by Vi = TTr bx
- · Choose sample points x_i^* in $[x_{i-1},x_i]$ to represent the depth of the layer
- · By similar triangles, $\frac{\Gamma_i}{10-x_i^2} = \frac{4}{10} \Rightarrow \Gamma_i = \frac{2}{5} (10-x_i^2)$



The volume of a thin layer is
$$V_i = \pi r_i^2 \Delta x = \pi \left(\frac{2}{5} (10 - x_i^*)\right)^2 \Delta x = \frac{4\pi}{25} (10 - x_i^*)^2 \Delta x$$

. The mass of a thin layer is

$$M_{i} = density \times volume = 1000 \cdot \frac{4\pi}{25} (10-x_{i}^{*})^{2} \Delta x = 160\pi (10-x_{i}^{*})^{2} \Delta x$$

4. Write an Expression for the Force on Each Layer - i.e. the force required to lift each layer

$$F_i = m_i \cdot g = 1568 \pi (10 - x_i^*)^2 \Delta x$$

5. Write an Expression for the Work on Each Layer

Each layer must be lifted a distance of
$$x_i^*$$
 to the top.

$$W_i = F_i \cdot x_i^* = 1568 \pi x_i^* (10 - x_i^*)^2 \Delta x$$

6. Sum the Work Over All Layers

Sum the Work Over All Layers

$$W = \lim_{N \to \infty} \int_{i=1}^{N} 1568\pi x_{i}^{*} (10-x_{i}^{*})^{2} \Delta x = \int_{2}^{10} 1568\pi x (10-x)^{2} dx$$

7. Simplify and Solve the Integral

$$W = 1568\pi \int_{2}^{10} 100 \times -20 \times^{2} + x^{3} dx$$

$$= 1568\pi \left[50 \times^{2} - \frac{20}{3} x^{3} + \frac{1}{4} x^{4} \right]_{2}^{10}$$

$$= 1568\pi \cdot \frac{20480}{3}$$

$$\approx 3.4 \times 10^{6} \text{ J}$$