6.3 Volumes by Cylindrical Shells

Question. How can we find the volume of the solid obtained by rotating about the *y*-axis the region bounded by $y = 2x^2 - x^3$ and y = 0?

Question. Below is a cylindrical shell with inner radius r_1 , outer radius r_2 , and height h. What is the volume of the shell?

Theorem. Let $f(x) \ge 0$, and let S be the solid obtained by rotating about the y-axis the region bounded by y = f(x), y = 0, x = a, and x = b, where $0 \le a < b$.

Show that the volume of S is $V = \int_a^b 2\pi x f(x) dx$.

Example. Find the volume of the solid obtained by rotating about the y-axis the region bounded by $y = 2x^2 - x^3$ and y = 0.

Example. Find the volume of the solid obtained by rotating about the *y*-axis the region between y = x and $y = x^2$.

Example. Use cylindrical shells to find the volume of the solid obtained by rotating about the *x*-axis the region under the curve $y = \sqrt{x}$ from 0 to 1.

Example. Find the volume of the solid obtained by rotating the region bounded by $y = x - x^2$ and y = 0 about the line x = 2.

Aspect	Washer Method	Shell Method
Definition	Used when the volume is computed by revolving a region and forming disks or washers (hollow disks) perpendicular to the axis of rotation.	Used when the volume is computed by revolving a region and forming cylindrical shells parallel to the axis of rotation.
Integration Variable	Typically x or y , corresponding to the axis perpendicular to the cross-section of the washer.	Typically x or y , corresponding to the height of the shell parallel to the axis of rotation.
Region Description	The region is described in terms of top and bottom boundaries $(y_T$ and y_B or x_R and x_L).	The region is described in terms of radii and heights of cylindrical shells.
Formula	$V = \pi \int_{a}^{b} \left[(\text{Outer Radius})^{2} - (\text{Inner Radius})^{2} \right] dx \text{ (or } dy).$	$V = 2\pi \int_{a}^{b} (\text{Radius}) \times (\text{Height}) dx$ (or dy).
Axis of Rotation	Typically suited for regions rotated around the x -axis or y -axis.	Typically suited for regions rotated around vertical or horizontal lines other than the x -axis or y -axis.
Cross-Section Shape	Perpendicular slices of the region form disks or washers.	Parallel slices of the region form cylindrical shells.
Visual Representation	Imagine cutting the solid into thin disks or washers perpendicular to the axis of rotation.	Imagine peeling the solid into thin cylindrical shells by cutting parallel to the axis of rotation.
Advantages	Simple to apply for solids symmetric about the axis of rotation.	Useful for solving problems where the washer method requires splitting into multiple integrals.
Disadvantages	May require splitting into multiple integrals if the region changes structure along the axis of rotation.	May involve slightly more complex visualizations and formulas.

Comparison of Washer and Shell Methods

Example. Consider the region in the first quadrant bounded by the curves $y = x^2$ and y = 2x. A solid is formed by rotating the region about the line x = -1.

Find the volume of the solid using:

- (a) x as the variable of integration.
- (b) y as the variable of integration.

Solution:

