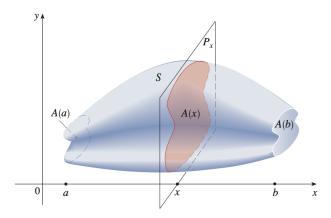
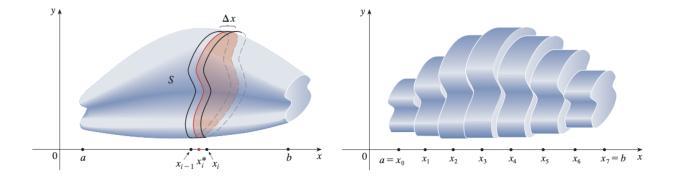
6.2 Volumes

Definition of Volume

Question. How can we find the volume of a solid region S?





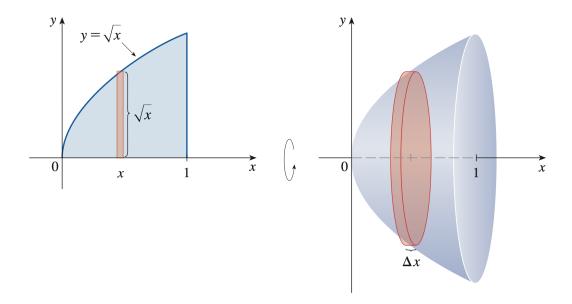
Example. Show that the volume of a sphere of radius r is $V = \frac{4}{3}\pi r^3$.



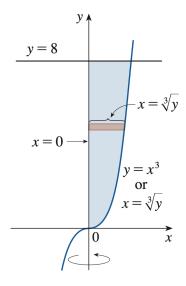
Approximating the volume of a sphere with radius 1

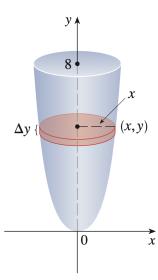
Volumes of Solids of Revolution

Example. Find the volume of the solid obtained by rotating about the x-axis the region under the curve $y = \sqrt{x}$ from 0 to 1.

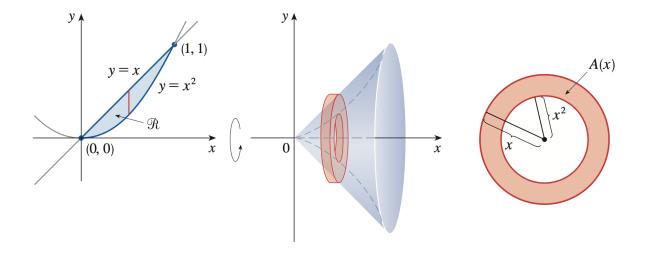


Example. Find the volume of the solid obtained by rotating the region bounded by $y = x^3, y = 8$, and x = 0 about the y-axis.

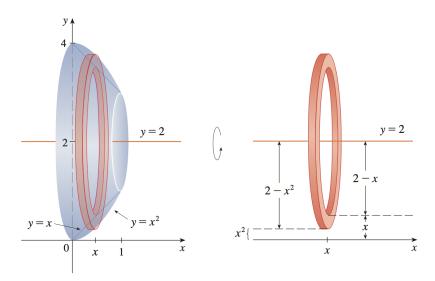




Example. The region R enclosed by the curves y = x and $y = x^2$ is rotated about the x-axis. Find the volume of the resulting solid.



Example. Find the volume of the solid obtained by rotating the region R enclosed by the curves y=x and $y=x^2$ about the line y=2.



Summary

To calculate the volume of a solid of revolution, we use the defining formulas:

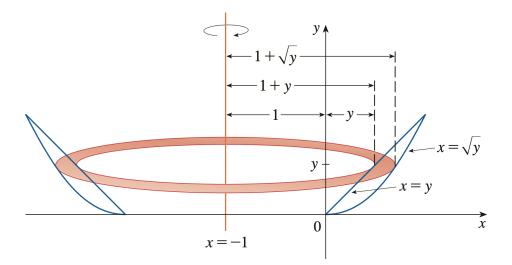
$$V = \int_{a}^{b} A(x) dx$$
 (rotation around the x-axis)

$$V = \int_{c}^{d} A(y) dy$$
 (rotation around the y-axis)

A(x) or A(y) represents the cross-sectional area, which is determined by the method used.

Cross-Section	Process for Finding Area
Disk	Cross-section is a solid disk. Determine the radius $r(x)$ or $r(y)$ based on the axis of rotation. Compute the area of the disk using: $A=\pi\cdot[{\rm radius}]^2$
Washer	Cross-section is a washer (a disk with a hole). Find the inner radius $r_{\rm in}$ and outer radius $r_{\rm out}$ from a sketch or equation. Compute the area of the washer by subtracting the inner disk area from the outer disk area: $A = \pi \cdot [r_{\rm out}]^2 - \pi \cdot [r_{\rm in}]^2$

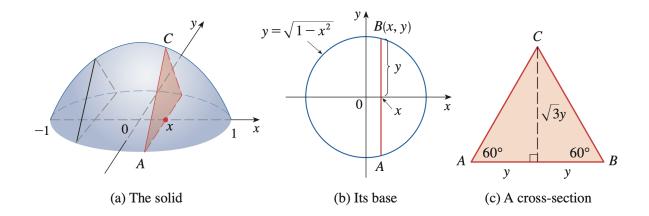
Example. Find the volume of the solid obtained by rotating the region R enclosed by the curves y = x and $y = x^2$ about the line x = -1.



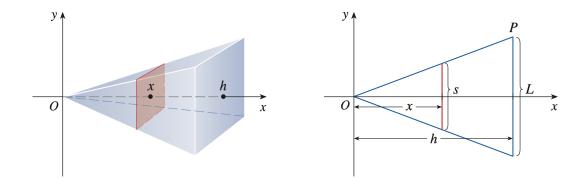
Finding Volume Using Cross-Sectional Area

We now find the volumes of solids that are not solids of revolution but whose cross-sections have areas that are readily computable.

Example. The figure below shows a solid with a circular base of radius 1. Parallel cross-sections perpendicular to the base are equilateral triangles. Find the volume of the solid.



Example. Find the volume of a pyramid whose base is square with side L and whose height is h.



Example. A wedge is cut out of a circular cylinder of radius 4 by two planes. One plane is perpendicular to the axis of the cylinder. The other intersects the first at an angle of 30° along a diameter of the cylinder. Find the volume of the wedge.

