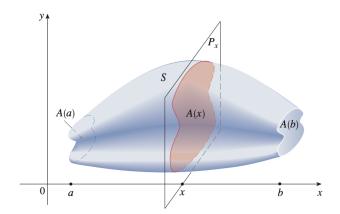
6.2 Volumes

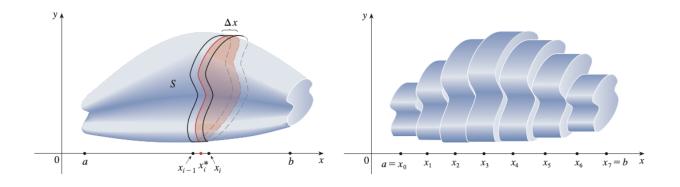
Definition of Volume

Question. How can we find the volume of a solid region S?

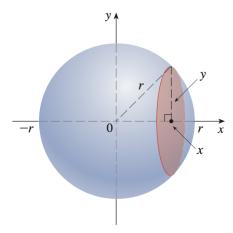


· Let A(x) be the area of the cross-section in the plane Px, which is the plane perpendicular to the x-axis, passing through x (think of sliving S with a knife)

- . The area A(x) will vary as a increases to 6
- . The total volume of S will be Ja A(x) dx



Example. Show that the volume of a sphere of radius r is $V = \frac{4}{3}\pi r^3$.



- · Place the sphere so that the center is at the origin
- The plane P_x intersects the sphere in a circle of radius $y = \sqrt{r^2 \times r^2}$
- The cross-sectional over is $A(x) = \pi y^2 = \pi (r^2 x^2)$

$$V = \int_{-\Gamma}^{\Gamma} A(x) dx = \int_{-\Gamma}^{\Gamma} \pi(r^{2} - x^{2}) dx = \pi \left[(r^{3} - \frac{r^{3}}{3}) - (-r^{3} + \frac{r^{3}}{3}) \right]$$

$$= \pi \left[r^{3} + r^{3} - \frac{2r^{3}}{3} \right]$$

$$= \frac{4}{3} \pi r^{3}$$

(a) Using 5 disks, $V \approx 4.2726$

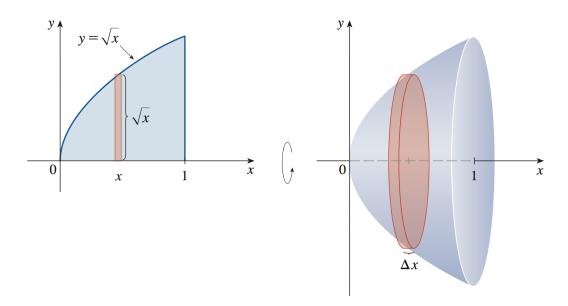
(b) Using 10 disks, $V \approx 4.2097$

(c) Using 20 disks, $V \approx 4.1940$

Approximating the volume of a sphere with radius 1

Volumes of Solids of Revolution

Example. Find the volume of the solid obtained by rotating about the x-axis the region under the curve $y = \sqrt{x}$ from 0 to 1.

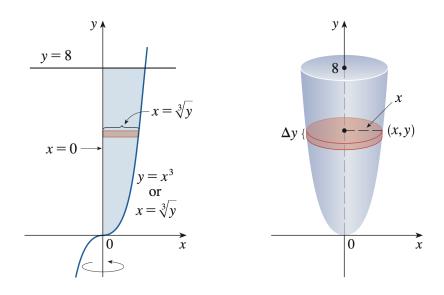


If we slice through the point x, we get a disk of radius
$$\sqrt{x}$$

The area of the cross-section is
$$A(x) = \pi (J_x)^2 = \pi x$$

$$V = \int_0^1 A(x) dx = \int_0^1 \pi_X dx = \pi \left[\frac{x^2}{2} \right]_0^1 = \frac{\pi}{2}$$

Example. Find the volume of the solid obtained by rotating the region bounded by $y = x^3, y = 8$, and x = 0 about the y-axis.



The region is being notated about the y-axis => slike the solid perpendicular to the y-axis and integrate with respect to J.

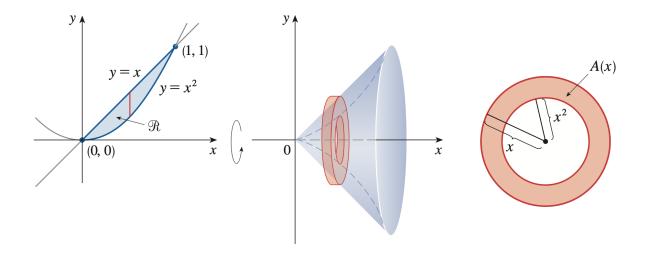
At height y, the disk has radius
$$x = \sqrt[3]{y}$$

The area of the disk is $A(y) = \pi (3\sqrt[3]{y})^2 = \pi y^{2/3}$

Radius

$$V = \int_{0}^{8} A(y) dy = \int_{0}^{8} \pi y^{2/3} dy = \pi \left[\frac{3}{5} y^{5/3} \right]_{0}^{8} = \frac{96\pi}{5}$$

Example. The region R enclosed by the curves y = x and $y = x^2$ is rotated about the x-axis. Find the volume of the resulting solid.



Here, a cross-section in the plane Px is a washer

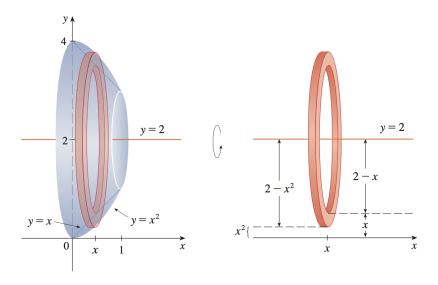
The cross-sectional area is

$$A(x) = \pi \left(x^{2}\right)^{2} - \pi \left(x^{2}\right)^{2} = \pi \left(x^{2} - x^{4}\right)$$
outer radius
inner radius

$$V = \int_{0}^{1} A(x) dx = \int_{0}^{1} \pi(x^{2} - x^{4}) dx = \pi \left[\frac{x^{3}}{3} - \frac{x^{5}}{5} \right]_{0}^{1}$$

$$= \frac{2\pi}{15}$$

Example. Find the volume of the solid obtained by rotating the region R enclosed by the curves y = x and $y = x^2$ about the line y = 2.



The cross-section is a washer

The cross-sectional area is
$$A(x) = \pi (2-x^2)^2 - \pi (2-x)^2$$

outer radius inner radius

$$V = \int_{0}^{1} A(x) dx = \int_{0}^{1} T \left[(2-x^{2})^{2} - (2-x^{2})^{2} \right] dx$$

$$= T \int_{0}^{1} x^{4} - 5x^{2} + 4x dx$$

$$= T \left[\frac{x^{5}}{5} - 5\frac{x^{3}}{3} + 4\frac{x^{2}}{2} \right]_{0}^{1}$$

$$= \frac{8T}{15}$$

Summary

To calculate the volume of a solid of revolution, we use the defining formulas:

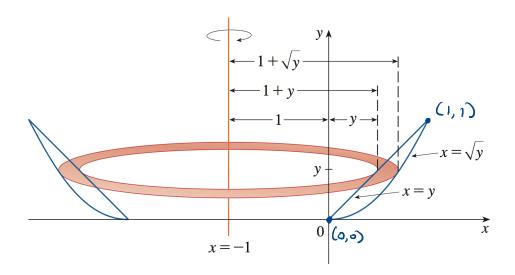
$$V = \int_{a}^{b} A(x) dx$$
 (rotation around the x-axis)

$$V = \int_{c}^{d} A(y) dy$$
 (rotation around the y-axis)

A(x) or A(y) represents the cross-sectional area, which is determined by the method used.

Cross-Section	Process for Finding Area
Disk	Cross-section is a solid disk. Determine the radius $r(x)$ or $r(y)$ based on the axis of rotation. Compute the area of the disk using: $A=\pi\cdot[{\rm radius}]^2$
Washer	Cross-section is a washer (a disk with a hole). Find the inner radius $r_{\rm in}$ and outer radius $r_{\rm out}$ from a sketch or equation. Compute the area of the washer by subtracting the inner disk area from the outer disk area: $A = \pi \cdot [r_{\rm out}]^2 - \pi \cdot [r_{\rm in}]^2$

Example. Find the volume of the solid obtained by rotating the region R enclosed by the curves y = x and $y = x^2$ about the line x = -1.



The cross-section is a washer

The cross-sectional area is

$$A(y) = \pi \left(\text{outer adivs}\right)^2 - \pi \left(\text{inner radius}\right)^2$$

$$= \pi \left(1 + \sqrt{y}\right)^2 - \pi \left(1 + y\right)^2$$

$$V = \int_{0}^{1} A(y) dy = \pi \int_{0}^{1} (1+Jy)^{2} - (1+y)^{2} dy$$

$$= \pi \int_{0}^{1} 2Jy - y - y^{2} dy$$

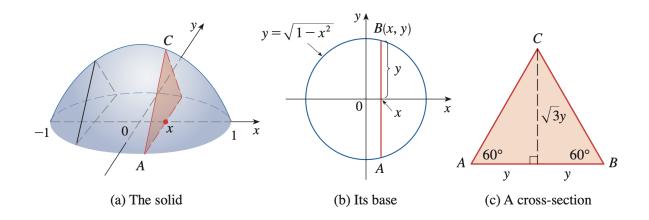
$$= \pi \left[\frac{4}{3}y^{3/2} - \frac{y^{2}}{2} - \frac{y^{3}}{3} \right]_{0}^{1}$$

$$= \frac{\pi}{2}$$

Finding Volume Using Cross-Sectional Area

We now find the volumes of solids that are not solids of revolution but whose cross-sections have areas that are readily computable.

Example. The figure below shows a solid with a circular base of radius 1. Parallel cross-sections perpendicular to the base are equilateral triangles. Find the volume of the solid.



Goal: find A(x) and compute [A(x) dx

From (a), A(x) is the area of an equilateral triangle ABC.

We need the base and the height.

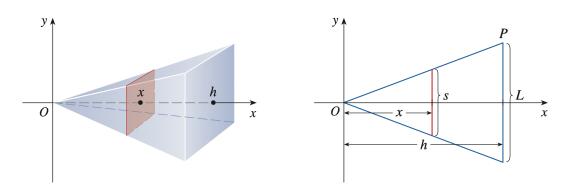
From (5), the base AB is 2y. Because $x^2+y^2=1$, the formula for a circle $2y=2\sqrt{1-x^2}$

From (c), the height is $\sqrt{3}y = \sqrt{3} \cdot \sqrt{1-x^2}$

Hence, $A(x) = \frac{1}{2}$. base height = $\frac{1}{2} \cdot 2\sqrt{1-x^2} \cdot \sqrt{3}\sqrt{1-x^2} = \sqrt{3}(1-x^2)$

$$V = \int_{-1}^{1} A(x) dx = \int_{-1}^{1} \sqrt{3} \left(1 - x^{2}\right) dx = \sqrt{3} \left[x - \frac{x^{3}}{3}\right]_{-1}^{1} = \frac{4\sqrt{3}}{3}$$

Example. Find the volume of a pyramid whose base is square with side L and whose height is h.



Solution:

- \bullet Place the origin O at the vertex of the pyramid and the x-axis along its central axis
- Goal: find A(x) and compute $\int_0^h A(x) dx$.
- A(x) computes the area of a square with side s.
- From similar triangles,

$$\frac{x}{h} = \frac{s/2}{L/2} = \frac{s}{L}$$

and so s = Lx/h

- Therefore, $A(x) = s^2 = \frac{L^2}{h^2}x^2$
- The volume of the solid is

$$V = \int_0^h A(x) dx$$
$$= \int_0^h \frac{L^2}{h^2} x^2 dx$$
$$= \left[\frac{L^2}{h^2} \cdot \frac{x^3}{3} \right]_0^h$$
$$= \frac{L^2 h}{3}$$

Example. A wedge is cut out of a circular cylinder of radius 4 by two planes. One plane is perpendicular to the axis of the cylinder. The other intersects the first at an angle of 30° along a diameter of the cylinder. Find the volume of the wedge.

