6.2 Volumes
Definition of Volume

Question. How can we find the volume of a solid region S7
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Example. Show that the volume of a sphere of radius r is V = §7r7’3.
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(c) Using 20 disks, V= 4.1940

(a) Using 5 disks, V= 4.2726 (b) Using 10 disks, V = 4.2097

Approximating the volume of a sphere with radius 1



Volumes of Solids of Revolution

Example. Find the volume of the solid obtained by rotating about the x-axis the region under
the curve y = y/z from 0 to 1.
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Example. Find the volume of the solid obtained by rotating the region bounded by y = 23,y = 8,
and x = 0 about the y-axis.
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Example. The region R enclosed by the curves y = = and y = 2?2 is rotated about the z-axis.
Find the volume of the resulting solid.
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Example. Find the volume of the solid obtained by rotating the region R enclosed by the curves
y = and y = x2 about the line y = 2.
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Summary

To calculate the volume of a solid of revolution, we use the defining formulas:

b
V= / A(z)dx (rotation around the x-axis)

d
V= / A(y)dy (rotation around the y-axis)

A(z) or A(y) represents the cross-sectional area, which is determined by the method used.

Cross-Section Process for Finding Area

Disk Cross-section is a solid disk. Determine the radius r(z) or
r(y) based on the axis of rotation. Compute the area of the
disk using;:

A = 7 - [radius]?

Washer Cross-section is a washer (a disk with a hole). Find the inner
radius i, and outer radius roy from a sketch or equation.
Compute the area of the washer by subtracting the inner
disk area from the outer disk area:

A=1- [rout]Q — - [rin]Q




Example. Find the volume of the solid obtained by rotating the region R enclosed by the curves
y = and y = x2 about the line z = —1.
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Finding Volume Using Cross-Sectional Area

We now find the volumes of solids that are not solids of revolution but whose cross-sections have
areas that are readily computable.

Example. The figure below shows a solid with a circular base of radius 1. Parallel cross-sections
perpendicular to the base are equilateral triangles. Find the volume of the solid.

(a) The solid (b) Its base (c) A cross-section
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Example. Find the volume of a pyramid whose base is square with side I and whose height is h.
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e Place the origin O at the vertex of the pyramid and the z-axis along its central axis

e Goal: find A(x) and compute foh A(x)dx.

e A(x) computes the area of a square with side s.

e From similar triangles,

and so s = Lz /h
e Therefore, A(x) = s> = ji—;xQ

e The volume of the solid is
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Example. A wedge is cut out of a circular cylinder of radius 4 by two planes. One plane is
perpendicular to the axis of the cylinder. The other intersects the first at an angle of 30° along a
diameter of the cylinder. Find the volume of the wedge.
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