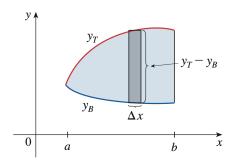

6.1 Areas Between Curves

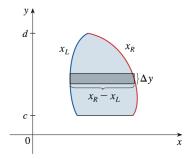
1. Visualize the Problem


- Sketch the curves to understand their relative positions.
- Identify the region whose area needs to be calculated.

2. Decide the Variable of Integration

Integration with Respect to x

Choose to integrate with respect to x if the region is vertically bounded (i.e., top and bottom curves).



The area is given by:

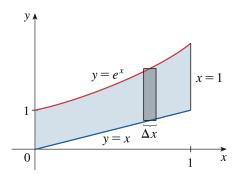
$$Area = \int_{a}^{b} (y_T - y_B) dx$$

Integration with Respect to y

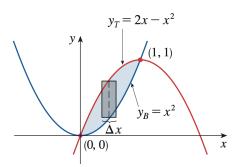
Choose to integrate with respect to y if the region is horizontally bounded (i.e., right and left curves).

The area is given by:

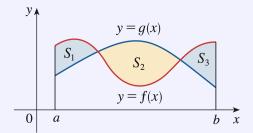
Area =
$$\int_{c}^{d} (x_R - x_L) dy$$


3. Find the Limits of Integration

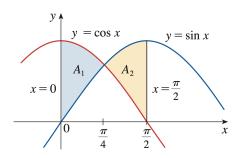
- These are either given, or they correspond to points of intersection.
- If needed, solve for the intersection points of the curves by setting them equal.


1

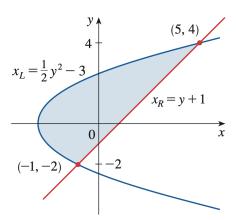
Area Between Curves: Integrating With Respect to \boldsymbol{x}


Example. Find the area of the region bounded above by $y = e^x$, bounded below by y = x, and bounded on the sides by x = 0 and x = 1.

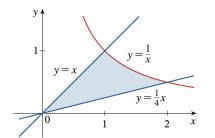
Example. Find the area of the region enclosed by the parabolas $y = x^2$ and $y = 2x - x^2$.

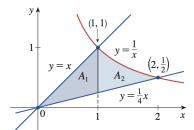

Sometimes we are asked to find the area between the curves y = f(x) and and y = g(x) where $f(x) \ge g(x)$ for some values of x but $g(x) \ge f(x)$ for other values of x.

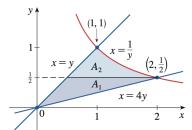
In this case, we split the given region S into several regions S_1, S_2, \ldots with areas A_1, A_2, \ldots . The total area is


$$A = A_1 + A_2 + \dots = \int_a^b |f(x) - g(x)| dx$$

Example. Find the area of the region bounded by the curves $y = \sin x$, $y = \cos x$, x = 0, and $x = \pi/2$.


Area Between Curves: Integrating With Respect to \boldsymbol{y}


Example. Find the area enclosed by the line y = x - 1 and the parabola $y^2 = 2x + 6$.



Example. Find the area of the region enclosed by the curves y = 1/x, y = x, and $y = \frac{1}{4}x$, using

- (a) x as the variable of integration.
- (b) y as the variable of integration.

