11.9 Representations of Functions as Power Series
In this section we see how to represent some familiar functions as sums of power series.

e This is useful for integrating functions that don’t have elementary antiderivatives and for
approximating functions by polynomials.

e Scientists do this to simplify the expressions they deal with; computer scientists do this to
evaluate functions on calculators and computers.

Power series representations of functions can be systematically derived by manipulating the geo-
metric series formula. The process involves the following steps:

1. Start with the geometric series formula:
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This is a foundational representation for f(x)
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T valid on the interval (—1,1).
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2. Manipulate the geometric series to represent other functions:

o Substitute variables: Replace z with expressions like —z, z

2
the series for related functions.

, or £ — a to adjust

o Differentiate or integrate term-by-term: Use differentiation or integration to de-
rive series for functions such as In(1 + x), tan~! x, or similar.

3. Understand the partial sums and convergence: The sum of a power series is the
1
limit of its sequence of partial sums. For f(z) =

1—2z’

sn(z)=14+z+22+..-+2" and

s nl;rglo sn(x).

For |z| < 1, the partial sums s,(z) become increasingly accurate approximations of
f(x) as n — oc.




Example. Express —— as the sum of a power series and find the interval of convergence.
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Example. Find a power series representation for
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3
Example. Find a power series representation for it
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Theorem. If the power series ch(x — a)" has radius of convergence R > 0, then the
function f defined by

f(x)_CO‘i'Cl(fU—a)-l-Cz(fL‘—a chfc—a
is differentiable (and therefore continuous) on the interval (e — R,a + R) and:
i) f(= )—01+262($—a)+303(1‘—a chnx—a —L
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The radii of convergence of the power series in Equations (i) and (ii) are both R.

Remark. Equations (i) and (ii) can be rewritten in the form:

(111) % [z% Cn(fE — a)"] = Z %[Cn(fﬂ _ a)n]

n=0

(iv) /[ch(xa ]daz—Z/ (z — a)"dx

n=0

We know that, for finite sums, the derivative of a sum is the sum of the derivatives and the
integral of a sum is the sum of the integrals. The theorem says the same is true for infinite
sums, provided we are dealing with power series.

Remark. Although the theorem says that the radius of convergence remains the same when
a power series is differentiated or integrated, this does not mean that the interval of conver-
gence remains the same. It may happen that the original series converges at an endpoint,
whereas the differentiated series diverges there.
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Example. Express as a power series. What is the radius of convergence?
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Example. Find a power series representation for In(1 + z) and its radius of convergence.
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Example. Find a power series representation for f(x) = tan™! z.
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Example.

1
(a) Evaluate / Tz dx as a power series.
x
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(b) Use part (a) to approximate / 1T dz correct to within 1077,
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Solution:

1

(a) e Start by expressing as a power series.
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This series converges for | — 27| < 1, or equivalently |z| < 1.

(b) e By the Fundamental Theorem of Calculus, we can use the antiderivative from part (a)
with C = 0:
05 4 28 15 22 0.5
/0 e L S TR TR N
11 1 1
278> 1poas mooml

e To approximate the sum, use the Alternating Series Estimation Theorem. Stopping after
the term with n = 3, the error is:

1

W ~ 6.4 x 10_11,

which is smaller than 10~7.

The approximate value of the integral is:
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