11.8 Power Series

So far we have studied series of numbers: > a,,. Here we consider series, called power series, in
which each term includes a power of the variable z: > c,a".

Definition. A power series is a series of the form ‘/ Think : inCinlke Pobnomirl]
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where x is a variable and the ¢,’s are constants called the coefficients of the series. For
each number that we substitute for z, the series is a series of constants that we can test for
convergence or divergence. A power series may converge for some values of z and diverge for
other values of . The sum of the series is a function

f(x)=co+crz+cax®+ -+ cpx™ +---

whose domain is the set of all x for which the series converges. Notice that f resembles a
polynomial. The only difference is that f has infinitely many terms.

Example. If we take ¢, = 1 for all n, the power series becomes the geometric series:
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Determine the values of x for which this series converges and diverges.
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Definition. A series of the form
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is called a power series in (z — a), a power series centered at a, or a power series
about a.

Notice that in writing out the term corresponding to n = 0, we adopt the convention that
(r —a)? =1 even when = = a. Notice also that when = = a, all of the terms are 0 for n > 1
and so the power series always converges when =z = a.

To determine the values of x for which a power series converges, we normally use the Ratio
Test.
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Example. For what values of x does the series ) ° | **—— converge?
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Example. For what values of x is the series ) 2 nlz" convergent?
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Example. For what values of « does the series Y ° (2’”—:), converge?
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Interval of Convergence

Theorem. For a power series _°  cp(x — a)”, there are only three possibilities:
(i) The series converges only when z = a.
(ii) The series converges for all .

(iii) There is a positive number R such that the series converges if |z —a| < R and diverges
if |z —a| > R.

divergence for |z —a| > R convergence for |z —a] < R divergence for |z —a| > R

O L 4

a—R a+ R

S|

Definition. The number R in case (iii) is called the radius of convergence of the power
series. By convention:

e In case (i), the radius of convergence is R = 0.

e In case (ii), The radius of convergence is R = co.

Definition. The interval of convergence of a power series is the interval that consists of
all values of = for which the series converges:

e In case (i), the interval is just a single point a.
e In case (ii), the interval is (—oo, 00).
e In case (iii), the inequality |z — a] < R can be rewritten as a — R < z < a + R.

— Anything can happen at the endpoints x = a+ R or x = a — R.

— The series could converge at one or both endpoints, or the series could diverge at
one or both endpoints

— In particular, there are four possibilities for the interval of convergence:

(a — R,a+R), (a—R,a+R], [a—R,a+R), [a—R,a+ R].




Example. Below is a table summarizing the convergence for the series we have seen so far.

Series Formula

Radius of Convergence

Interval of Convergence
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Remark. In general, the Ratio Test should be used to determine the radius of convergence
R. The Ratio Test always fails when z is an endpoint of the interval of convergence, so the
endpoints must be checked with some other test.




Example. Find the radius of convergence and interval of convergence of the series:
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Example. Find the radius of convergence and interval of convergence of the series:
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