11.8 Power Series

So far we have studied series of numbers: $\sum a_n$. Here we consider series, called *power series*, in which each term includes a power of the variable x: $\sum c_n x^n$.

Definition. A **power series** is a series of the form

Think: infinite polynomial

$$\sum_{n=0}^{\infty} c_n x^n = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + \cdots$$

where x is a variable and the c_n 's are constants called the **coefficients** of the series. For each number that we substitute for x, the series is a series of constants that we can test for convergence or divergence. A power series may converge for some values of x and diverge for other values of x. The sum of the series is a function

$$f(x) = c_0 + c_1 x + c_2 x^2 + \dots + c_n x^n + \dots$$

whose domain is the set of all x for which the series converges. Notice that f resembles a polynomial. The only difference is that f has infinitely many terms.

Example. If we take $c_n = 1$ for all n, the power series becomes the geometric series:

$$\sum_{n=0}^{\infty} x^n = 1 + x + x^2 + \dots + x^n + \dots$$

Determine the values of x for which this series converges and diverges.

For each value of x, we get a geometric series with common ratio x

This series converges when -1 < x < 1 and diverges when $1 \times 1 \ge 1$

For example: if
$$x = \frac{1}{2}$$
, $\sum_{n=0}^{\infty} (\frac{1}{2})^n = 1 + \frac{1}{2} + \frac{1}{4} + \dots$ converges to 2

if
$$x=2$$
, $\sum_{n=0}^{\infty} 2^n = 1 + 2 + 4 + \dots$ diverges

This power series converges to
$$\frac{a}{1-r} = \frac{1}{1-x}$$

Definition. A series of the form

$$\sum_{n=0}^{\infty} c_n (x-a)^n = c_0 + c_1 (x-a) + c_2 (x-a)^2 + \cdots$$

is called a power series in (x - a), a power series centered at a, or a power series about a.

Notice that in writing out the term corresponding to n = 0, we adopt the convention that $(x - a)^0 = 1$ even when x = a. Notice also that when x = a, all of the terms are 0 for $n \ge 1$ and so the power series always converges when x = a.

To determine the values of x for which a power series converges, we normally use the Ratio Test.

Example. For what values of x does the series $\sum_{n=1}^{\infty} \frac{(x-3)^n}{n}$ converge?

1) Let
$$a_n = \frac{(x-3)^n}{n}$$

Apply the Ratio Test:

$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n\to\infty} \left| \frac{(x-3)^{n+1}}{n+1} \cdot \frac{n}{(x-3)^n} \right| = \lim_{n\to\infty} \frac{n}{n+1} \cdot |x-3| = |x-3|$$

By the Ratio Test, the series converges when |x-3| < 1 and diverges when |x-3| > 1.

2 Solving for
$$x$$
, $|x-3|<1 \Rightarrow -1< x-3<1 \Rightarrow 2< x< 4$

If
$$x=2$$
: $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ converges by the A.S.T.

If
$$x = 4$$
: $\int_{0}^{\infty} \frac{1}{n} diveges$ (harmonic series)

Example. For what values of x is the series $\sum_{n=0}^{\infty} n! x^n$ convergent?

Let
$$a_n = n! \times n!$$

Apply the Ratio Test:

This series diverges for $x \neq 0$ and converges only when x = 0

Example. For what values of x does the series $\sum_{n=0}^{\infty} \frac{x^n}{(2n)!}$ converge?

Let
$$a_n = \frac{x^n}{(2n)!}$$

Apply the Ratio Test:

$$\lim_{N \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{N \to \infty} \left| \frac{x^{n+1}}{(2n+2)!} \cdot \frac{(2n)!}{x^n} \right|$$

$$= \lim_{N \to \infty} \left| \frac{x}{(2n+2)(2n+1)} \right|$$

$$= \lim_{N \to \infty} \frac{|x|}{(2n+2)(2n+1)} = 0$$

By the Ratio Test, the series converges for all x.

Interval of Convergence

Theorem. For a power series $\sum_{n=0}^{\infty} c_n(x-a)^n$, there are only three possibilities:

- (i) The series converges only when x = a.
- (ii) The series converges for all x.
- (iii) There is a positive number R such that the series converges if |x-a| < R and diverges if |x-a| > R.

divergence for |x-a| > R convergence for |x-a| < R divergence for |x-a| > R a-R a a+R

Definition. The number R in case (iii) is called the **radius of convergence** of the power series. By convention:

- In case (i), the radius of convergence is R = 0.
- In case (ii), The radius of convergence is $R = \infty$.

Definition. The **interval of convergence** of a power series is the interval that consists of all values of x for which the series converges:

- In case (i), the interval is just a single point a.
- In case (ii), the interval is $(-\infty, \infty)$.
- In case (iii), the inequality |x-a| < R can be rewritten as a-R < x < a+R.
 - Anything can happen at the endpoints x = a + R or x = a R.
 - The series could converge at one or both endpoints, or the series could diverge at one or both endpoints
 - In particular, there are four possibilities for the interval of convergence:

4

$$(a-R,a+R),\quad (a-R,a+R],\quad [a-R,a+R),\quad [a-R,a+R].$$

Example. Below is a table summarizing the convergence for the series we have seen so far.

Series Formula	Radius of Convergence	Interval of Convergence
$\sum_{n=0}^{\infty} x^n$	R = 1	(-1,1)
$\sum_{n=1}^{\infty} \frac{(x-3)^n}{n}$	R=1	[2,4)
$\sum_{n=0}^{\infty} n! x^n$	R = 0	{0}
$\sum_{n=0}^{\infty} \frac{x^n}{(2n)!}$	$R = \infty$	$(-\infty,\infty)$

Remark. In general, the Ratio Test should be used to determine the radius of convergence R. The Ratio Test always fails when x is an endpoint of the interval of convergence, so the endpoints must be checked with some other test.

Example. Find the radius of convergence and interval of convergence of the series:

$$\sum_{n=0}^{\infty} \frac{(-3)^n x^n}{\sqrt{n+1}}.$$

Let
$$a_n = \frac{(-3)^n x^n}{\sqrt{n+1}}$$

Apply the Ratio Test:

$$\lim_{N\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{N\to\infty} \left| \frac{(-3)^{n+1} \times^{n+1}}{\sqrt{n+2}} \cdot \frac{\sqrt{n+1}}{(-3)^n \times^n} \right| = \lim_{N\to\infty} \left| \frac{(-3)^{n+1}}{(-3)^n} \cdot \frac{x^{n+1}}{x^n} \cdot \frac{\sqrt{n+1}}{\sqrt{n+2}} \right|$$

$$= \lim_{N\to\infty} \left| -3 \times \cdot \sqrt{\frac{n+1}{n+2}} \right| = \lim_{N\to\infty} \left| 3 \times \sqrt{\frac{n+1}{n+2}} \right| = 3 \times 1$$

By the Ratio Test, the series conveyes for 3|x| < 1 and diverges for 3|x| > 1

Solve for x:
$$3|x|<1 \Rightarrow |x|<\frac{1}{3} \Rightarrow -\frac{1}{3}< x<\frac{1}{3}$$

Check the endpoints:

When $X = -\frac{1}{3}$:

$$\sum_{n=0}^{\infty} \frac{(-3)^n \left(-\frac{1}{3}\right)^n}{\sqrt{n+1}} = \sum_{n=0}^{\infty} \frac{1}{\sqrt{n+1}}$$

When
$$x = \frac{1}{3}$$
:

$$\sum_{n=0}^{\infty} \frac{(-3)^n (\frac{1}{3})^n}{\sqrt{n+1}} = \sum_{n=0}^{\infty} \frac{(-1)^n}{\sqrt{n+1}}$$

which diverges (p-somes with p = \frac{1}{2} < 1)

Final Answer: the interval of conveyence is $(-\frac{1}{3}, \frac{1}{3}]$ the radius of conveyence is $R = \frac{1}{3}$ **Example.** Find the radius of convergence and interval of convergence of the series:

$$\sum_{n=0}^{\infty} \frac{n(x+2)^n}{3^{n+1}}.$$