11.5 Alternating Series and Absolute Convergence

The convergence tests that we have looked at so far apply only to series with positive terms. We
now begin examining series whose terms are not necessarily positive. Of particular importance are
alternating series, whose terms alternate in sign.

Alternating Series

Definition. An alternating series is a series whose terms are alternately positive and
negative. Formally, it is a series of the form:
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where b, > 0 for all n.

Example. Here are two examples of alternating series:
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Theorem (Alternating Series Test). If the alternating series
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S (1" by =by —by+bg—ba+bs—bg+ -+ (bp>0)

n=1

satisfies the conditions:
(i) bpy1 < by, for all n,
(i) limy—00 by =0,

then the series is convergent. In other words, if the terms of an alternating series decrease
toward 0 in absolute value, then the series converges.




Visual Proof of the Alternating Series Test
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e Start by plotting the first term s; = b; on a number line.

e To find sg, subtract bo. This places so to the left of s7.

e Add b3 to find s3, which moves s3 to the right of ss.

e Subtract by to locate s4, which places s4 to the left of s3.

e Continue this process, alternating addition and subtraction of the terms b,,.

e Since b, — 0, the successive steps become smaller and smaller. The partial sums oscillate
back and forth.

e Observe:
— The even partial sums s2, s4, Sg, - . . form an increasing sequence.
— The odd partial sums s1, s3, S5, . .. form a decreasing sequence.

e Both the even and odd partial sums converge to the same limit s, which is the sum of the
series.



Proof of the Alternating Series Test
e Why are the even partial sums so, s4, sg, . . . increasing and bounded above?
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e What can we conclude about the limit of the even partial sums so, s4, S¢, .. .7
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e Why do the odd partial sums s1, s3, S5, .. . converge to the same limit s?
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e What does this imply about the convergence of the series > oo ;(—1)""1b,?
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Example. Determine whether the alternating harmonic series Z - '-) L
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SR for convergence or divergence.
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Estimating Sums of Alternating Series

A partial sum s, of any convergent series can be used as an approximation to the total sum s.
However, this is only useful if we can estimate the accuracy of the approximation. The error
involved in approximating s by s, is called the remainder:

R, =s— sy.

The following theorem provides a bound for the size of this error for series that satisfy the
conditions of the Alternating Series Test. Specifically, the error is smaller than b,,1, the absolute
value of the first neglected term.

Theorem. If s = >°° | (—1)""1b,, where b, > 0, is the sum of an alternating series that
satisfies:

(1) bn+1 S bn
(i) limy—00 by =0,
then the remainder R,, = s — s,, satisfies:

|Rn| = |3 - Sn‘ < bpt1,

where by, 1 is the absolute value of the first neglected term.
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Example. Find the sum of the series g ( ') correct to three decimal places.
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So 0.33 % wrect o 3 decimal places.

Remark. The rule that the error |s—s,| is smaller than the first neglected term b,,1; is valid
only for alternating series that satisfy the conditions of the Alternating Series Estimation
Theorem. This rule does not apply to other types of series.




Absolute Convergence and Conditional Convergence

Definition. Given any series Y . a,, we can consider the corresponding series:
> lan| = la1| + |as| + laa| + -+,
whose terms are the absolute values of the terms of the original series.

A series ) a, is called absolutely convergent if the series of absolute values »_ |a,| is
convergent.

Notice that if ) a,, is a series with positive terms, then |a,| = a,, and so absolute convergence
is the same as convergence in this case.

Example. Determine whether the alternating series
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Definition. A series ) a, is called conditionally convergent if it is convergent but not
absolutely convergent; that is, if > a,, converges but > |a,| diverges.

Example. Show that the that the alternating harmonic series
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is conditionally convergent.
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Remark. This example shows that it is possible for a series to be convergent but not absolutely
convergent. The following theorem states that absolute convergence implies convergence.

Theorem. If a series ) a,, is absolutely convergent, then it is convergent.
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Example. Determine whether the series
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is convergent or divergent.
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Example. Determine whether the series Z
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Example. Determine whether the series Z (=D"n
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is absolutely convergent, conditionally con-
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