11.4 The Comparison Tests

In the comparison tests the idea is to compare a given series with a series that is known to be
convergent or divergent. If two series have only positive terms, we can compare corresponding
terms directly to see which are larger (the Direct Comparison Test) or we can investigate the limit
of the ratios of corresponding terms (the Limit Comparison Test).

The Direct Comparison Test

Theorem. Suppose that > a, and ) b, are series with positive terms.
1. If Y b, is convergent and a,, < b, for all n, then ) a, is also convergent.

2. If > by, is divergent and a,, > b, for all n, then ) a, is also divergent.
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When using Direct Comparison Test, we must have some known series ) _ b, for the purpose
of comparison. Most of the time we use one of these series:

o A p-series ) % converges if p > 1 and diverges if p < 1.

e A geometric series > ar™~! converges if |r| < 1 and diverges if |r| > 1.
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Remark. Although the condition a, < b, or a,, > b, in the Direct Comparison Test is given
for all n, we need verify only that it holds for n > N, where IV is some fixed integer, because
the convergence of a series is not affected by a finite number of terms.
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Remark. The Direct Comparison Test is conclusive only if the terms of the series being
tested are smaller than those of a convergent series or larger than those of a divergent series.
If the terms are larger than the terms of a convergent series or smaller than those of a
divergent series, then the Direct Comparison Test doesn’t apply. Consider, for instance, the

series:
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is useless as far as the Direct Comparison Test is concerned because » b, = ) (§)n is
convergent and a,, > b,. Nonetheless, we have the feeling that 2n—1_1 ought to be convergent

because it is very similar to the convergent geometric series (%) ]




The Limit Comparison Test

Theorem. Suppose that > a, and ) b, are series with positive terms. If:

where c is a finite number and ¢ > 0, then either both series converge or both diverge
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