
11.3 The Integral Test and Estimates of Sums

In general, it is difficult to find the exact sum of a series. We were able to accomplish this for
geometric series and for some telescoping series because in each of those cases we could find a
simple formula for the nth partial sum sn. But usually it isn’t easy to discover such a formula.
Therefore, we develop several tests that enable us to determine whether a series is convergent or
divergent without explicitly finding its sum. The first test involves improper integrals.

Theorem. Suppose f(x) is a continuous, positive, decreasing function on [1,∞) and let
an = f(n).

1. If

∫ ∞
1

f(x) dx is convergent, then

∞∑
n=1

an is convergent.

2. If

∫ ∞
1

f(x) dx is divergent, then

∞∑
n=1

an is divergent.

Proof.

• Show that a2 + a3 + · · ·+ an ≤
∫ n
1 f(x) dx

• Show that
∫ n
1 f(x) dx ≤ a1 + a2 + · · ·+ an−1
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• If

∫ ∞
1

f(x) dx is convergent, show that
∑

an is convergent.

• If

∫ ∞
1

f(x) dx is divergent, show that
∑

an is divergent.
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Remark. When we use the Integral Test, it is not necessary to start the series or the integral
at n = 1. For instance, in testing the series:

∞∑
n=4

1

(n− 3)2
,

we use: ∫ ∞
4

1

(x− 3)2
dx.

Also, it is not necessary that f be always decreasing. What is important is that f be
ultimately decreasing, that is, decreasing for x larger than some number N . Then

∑∞
n=N an

is convergent, so
∑∞

n=1 an is convergent.

Example. Test the series:
∞∑
n=1

1

n2 + 1

for convergence or divergence.
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Theorem. A p-series is a series of the form:

∞∑
n=1

1

np
,

where p is a real number. The behavior of the series depends on the value of p. In particular,
it is convergent if p > 1 and divergent if p ≤ 1.
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Example. Determine if the series

∞∑
n=1

1

n3
is convergent or divergent.

Example. Determine if the series
∞∑
n=1

1

n1/3
is convergent or divergent.

Example. Determine whether the series
∞∑
n=1

lnn

n
converges or diverges.
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Estimating the Sum of a Series

Suppose we have been able to use the Integral Test to show that a series
∑

an is convergent and
we now want to find an approximation to the sum s of the series. Any partial sum sn is an
approximation to s because limn→∞ sn = s. But how good is such an approximation? To find out,
we need to estimate the size of the remainder :

Rn = s− sn = an+1 + an+2 + an+3 + · · ·

Theorem. Suppose f(k) = ak, where f is a continuous, positive, decreasing function for
x ≥ n, and

∑
an is convergent. If Rn = s− sn, then:∫ ∞

n+1
f(x) dx ≤ Rn ≤

∫ ∞
n

f(x) dx.

(a) Upper bound for Rn (b) Lower bound for Rn
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Example.

(a) Approximate the sum of the series
∑ 1

n3
by using the sum of the first 10 terms. Estimate

the error involved in this approximation.

(b) How many terms are required to ensure that the sum is accurate to within 0.0005?
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Theorem. If we add sn to each side of the inequalities for Rn, we obtain:

sn +

∫ ∞
n+1

f(x) dx ≤ s ≤ sn +

∫ ∞
n

f(x) dx.

These inequalities provide a lower bound and an upper bound for s, giving a more accurate
approximation to the sum of the series than the partial sum sn alone.

Example. Use the above theorem with n = 10 to estimate the sum of the series
∞∑
n=1

1

n3
.

Remark. If we compare this to the previous example, we see that the improved estimate for s can
be much better than the estimate s ≈ sn. To make the error smaller than 0.0005, we had to use 32
terms in the previous example, but only 10 terms in the example above.
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