11.3 The Integral Test and Estimates of Sums

In general, it is difficult to find the exact sum of a series. We were able to accomplish this for
geometric series and for some telescoping series because in each of those cases we could find a
simple formula for the nth partial sum s,. But usually it isn’t easy to discover such a formula.
Therefore, we develop several tests that enable us to determine whether a series is convergent or
divergent without explicitly finding its sum. The first test involves improper integrals.

Theorem. Suppose f(z) is a continuous, positive, decreasing function on [1,00) and let
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1. If / f(z) dz is convergent, then Z ayp is convergent.
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2. If / f(x) dzx is divergent, then Z a, is divergent.
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Proof.
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e Show that [{* f(z)de < a1 +az+ - +an1
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o If / f(x) dx is convergent, show that Z an is convergent.
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Remark. When we use the Integral Test, it is not necessary to start the series or the integral
at n = 1. For instance, in testing the series:
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Also, it is not necessary that f be always decreasing. What is important is that f be
ultimately decreasing, that is, decreasing for z larger than some number N. Then Y > \ ap
is convergent, so Y > | a, is convergent.
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Example. Test the series:
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for convergence or divergence.
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Theorem. A p-series is a series of the form:
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where p is a real number. The behavior of the series depends on the value of p. In particular,
it is convergent if p > 1 and divergent if p < 1.

1t p<O: im — < 00 Bj the Test G b}vqamuz.‘

TPV} nP

P ®ries divermes,

- = lim L = [ By He Te L D
l : 3 esh w-‘jemel

1£ = : \"’V\
P ° n’ N-o0

NS

e Sserfey  Jive rAQS.

I
- IF p>o: The Fachon  £63 = xP 15 Conkinuons, positive,
ond 4&cr€«5in3 on [,0)., The fn}‘%n‘l Test apples.
e ®
I é?'%* We  showed jl P Ix (NNV:)'.S i+ P>l and

é,—.\,uh,,s 0P st The same con be sad Q. +he  Seriey

53 W iMcan T‘S‘\'.



oo
1
Example. Determine if the series g — Is convergent or divergent.
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Estimating the Sum of a Series

Suppose we have been able to use the Integral Test to show that a series > a, is convergent and

we now want to find an approximation to the sum s of the series. Any partial sum s, is an
approximation to s because lim,_, s, = s. But how good is such an approximation? To find out,

we need to estimate the size of the remainder:
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Theorem. Suppose f(k) = a, where f is a continuous, positive, decreasing function for

x >mn, and Y a, is convergent. If R,, = s — s,, then:
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% Example.
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(a) Approximate the sum of the series Z — by using the sum of the first 10 terms. Estimate
n

the error involved in this approximation.

(b) How many terms are required to ensure that the sum is accurate to within 0.00057?
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Theorem. If we add s, to each side of the inequalities for R,,, we obtain:

sn—i-/n:f(x)dxgsgsn—i-/noof(a:)da:.

These inequalities provide a lower bound and an upper bound for s, giving a more accurate
approximation to the sum of the series than the partial sum s,, alone.
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Example. Use the above theorem with n = 10 to estimate the sum of the series Z —-
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Remark. If we compare this to the previous example, we see that the improved estimate for s can
be much better than the estimate s ~ s,. To make the error smaller than 0.0005, we had to use 32
terms in the previous example, but only 10 terms in the example above.



