11.3 The Integral Test and Estimates of Sums

In general, it is difficult to find the exact sum of a series. We were able to accomplish this for geometric series and for some telescoping series because in each of those cases we could find a simple formula for the nth partial sum s_n . But usually it isn't easy to discover such a formula. Therefore, we develop several tests that enable us to determine whether a series is convergent or divergent without explicitly finding its sum. The first test involves improper integrals.

Theorem. Suppose f(x) is a continuous, positive, decreasing function on $[1, \infty)$ and let $a_n = f(n)$.

- 1. If $\int_{1}^{\infty} f(x) dx$ is convergent, then $\sum_{n=1}^{\infty} a_n$ is convergent.
- 2. If $\int_{1}^{\infty} f(x) dx$ is divergent, then $\sum_{n=1}^{\infty} a_n$ is divergent.

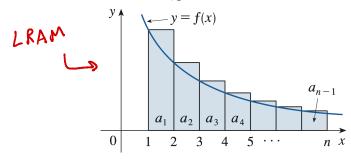
Proof.

• Show that $a_2 + a_3 + \cdots + a_n \leq \int_1^n f(x) dx$

RRAM y = f(x) $a_2 \quad a_3 \quad a_4 \quad a_5 \quad a_n$ $0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad \cdots \quad n \quad x$

az + az + ... + an represents the area of the shaded rectonyles, which is less than or equal to the total area under the curve.

• Show that $\int_{1}^{n} f(x) dx \le a_1 + a_2 + \dots + a_{n-1}$



a, t az t... t an-1 represents the area of the shaded rectangles, which is greater than or equal to the total area under the curve.

• If $\int_{1}^{\infty} f(x) dx$ is convergent, show that $\sum a_n$ is convergent.

We will show isn't is an increasing, banded sequence.

This will imply that isn't converges by the Monotonia Sequence theorem. By definition, this will show Zan converges.

Increasing: We need to show $s_n < s_{n+1}$. Since $a_{n+1} = f(n+1)$ and f(x) is a positive function, $s_n < s_n + a_{n+1} = s_{n+1}$

added a, \leq Bounded: $a_2 + a_3 + \dots + a_n \leq \int_1^n f(x) dx \leq \int_0^\infty f(x) dx$ to both $\leq s_n \leq a_1 + \int_1^\infty f(x) dx = M$, where M is some finite constant.

Conclude: Sn & M for all n. Hence & Sn 3 is bounded above.

• If $\int_{1}^{\infty} f(x) dx$ is divergent, show that $\sum a_n$ is divergent.

Recall: $\int_{1}^{n} f(x) dx \leq a_{1} + a_{2} + ... + a_{n-1} = s_{n-1}$

Since $\int_{1}^{n} f(x) dx \rightarrow \infty$ as $n \rightarrow \infty$, $s_{n-1} \rightarrow \infty$ as well.

Since Sn-1 & Sn this implies sn > 00, and so Zian diverges.

Remark. When we use the Integral Test, it is not necessary to start the series or the integral at n = 1. For instance, in testing the series:

$$\sum_{n=4}^{\infty} \frac{1}{(n-3)^2},$$

we use:

$$\int_4^\infty \frac{1}{(x-3)^2} \, dx.$$

Also, it is not necessary that f be always decreasing. What is important is that f be ultimately decreasing, that is, decreasing for x larger than some number N. Then $\sum_{n=N}^{\infty} a_n$ is convergent, so $\sum_{n=1}^{\infty} a_n$ is convergent.

Example. Test the series:

$$\sum_{n=1}^{\infty} \frac{1}{n^2 + 1}$$

for convergence or divergence.

The function
$$f(x) = \frac{1}{\chi^2 + 1}$$
 is continuous, positive, and decreasing on $[1, \infty)$, so the Integral Test applies.

$$\int_{1}^{\infty} \frac{1}{x^{2}+1} dx = \lim_{t \to \infty} \int_{1}^{t} \frac{1}{x^{2}+1} dx$$

$$= \lim_{t \to \infty} \left[\tan^{-1} x \right]_{1}^{t}$$

$$= \lim_{t \to \infty} \left(\tan^{-1} (t) - \tan^{-1} (t) \right)$$

$$= \lim_{t \to \infty} \tan^{-1} t - \lim_{t \to \infty} \tan^{-1} t$$

$$= \frac{\pi}{2} - \frac{\pi}{4} = \frac{\pi}{4}$$

Thus,
$$\int_{1}^{\infty} \frac{1}{x^{2}+1} dx$$
 converges. So, by the Integral Test, the Series $\sum_{n=1}^{\infty} \frac{1}{n^{2}+1}$ converges as well.

Theorem. A p-series is a series of the form:

$$\sum_{n=1}^{\infty} \frac{1}{n^p},$$

where p is a real number. The behavior of the series depends on the value of p. In particular, it is convergent if p > 1 and divergent if $p \le 1$.

- The p<0: $\lim_{N\to\infty}\frac{1}{NP}=\infty$. By the Test for Divergence, the series diverges.
- If $\rho = 0$: $\lim_{n \to \infty} \frac{1}{n^{\rho}} = \lim_{n \to \infty} \frac{1}{1} = 1$. By the Test for Divergence, the series diverges.
- If p > 0: The function $f(x) = \frac{1}{\chi p}$ is continuous, positive, and decreasing on $[1, \infty)$. The Integral Test applies. In §7.8, we showed $\int_{1}^{\infty} \frac{1}{\chi p} dx$ converges if p > 1 and diverges if 0 . The same can be said for the series by the Integral Test.

Example. Determine if the series $\sum_{n=1}^{\infty} \frac{1}{n^3}$ is convergent or divergent.

This is a p-series with p=3. Since 3>1, the series converges.

Example. Determine if the series $\sum_{n=1}^{\infty} \frac{1}{n^{1/3}}$ is convergent or divergent.

This is a p-series with p= 1. Since 1 1 1, the series diverges.

Example. Determine whether the series $\sum_{n=1}^{\infty} \frac{\ln n}{n}$ converges or diverges. We bassing n

The function $f(x) = \frac{\ln x}{x}$ is positive and continuous for x>1.

To show f(x) is decreasing, we compute the derivative:

$$f'(x) = \frac{x^2}{x \cdot \frac{x}{1} - \ln x} = \frac{1 - \ln x}{1 - \ln x}$$

f'(x) < 0 when $\ln x > 1$, that is, when x > e. So f is decreasing when x > e.

Apply the Integral Test:

$$\int_{1}^{\infty} \frac{\ln x}{x} dx = \lim_{t \to \infty} \int_{1}^{t} \frac{\ln x}{x} dx = \lim_{t \to \infty} \left[\frac{(\ln x)^{2}}{2} \right]_{1}^{t}$$

$$= \lim_{t \to \infty} \frac{(\ln t)^{2}}{2} - \frac{(\ln(1))^{2}}{2} = \lim_{t \to \infty} \frac{(\ln t)^{2}}{2} \to \infty$$

Since the integral diverges, the series $\sum_{n=1}^{\infty} \frac{\ln n}{n}$ diverges by the Integral Test.

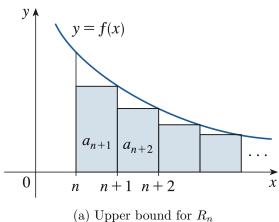
Estimating the Sum of a Series

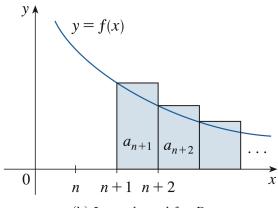
Suppose we have been able to use the Integral Test to show that a series $\sum a_n$ is convergent and we now want to find an approximation to the sum s of the series. Any partial sum s_n is an approximation to s because $\lim_{n\to\infty} s_n = s$. But how good is such an approximation? To find out, we need to estimate the size of the *remainder*:

$$R_n = s - s_n = a_{n+1} + a_{n+2} + a_{n+3} + \cdots$$

Theorem. Suppose $f(k) = a_k$, where f is a continuous, positive, decreasing function for $x \ge n$, and $\sum a_n$ is convergent. If $R_n = s - s_n$, then:

$$\int_{n+1}^{\infty} f(x) \, dx \le R_n \le \int_{n}^{\infty} f(x) \, dx.$$





(b) Lower bound for R_n

$$S-S_n = Actual - Estimate = R_n = \alpha_{n+1} + \alpha_{n+2} + \alpha_{n+3} + ... = sum of the rectangles$$

For x≥n, compare the areas of the rectangles to the area Under the curve

X

Example.

- (a) Approximate the sum of the series $\sum \frac{1}{n^3}$ by using the sum of the first 10 terms. Estimate the error involved in this approximation.
- (b) How many terms are required to ensure that the sum is accurate to within 0.0005?

Note:
$$f(x) = \frac{1}{x^3}$$
 satisfies the conditions for the Integral Test (positive, continuous, decreasing for $x \ge 1$)

(A)
$$\sum_{n=1}^{\infty} \frac{1}{n^3} \approx S_{10} = \frac{1}{1^3} + \frac{1}{2^3} + \frac{1}{3^3} + \dots + \frac{1}{10^3} \approx 1.1975$$

According to the remainder estimate,

$$R_{n} \leq \int_{n}^{\infty} \frac{1}{x^{3}} dx = \lim_{t \to \infty} \int_{n}^{t} \frac{1}{x^{3}} dx = \lim_{t \to \infty} \left[-\frac{1}{2x^{2}} \right]_{n}^{t}$$

$$= \lim_{t \to \infty} \left(-\frac{1}{2t^{2}} + \frac{1}{2n^{2}} \right) = \frac{1}{2n^{2}}$$

$$\Rightarrow$$
 $R_{10} \le \frac{1}{2(10)^2} = \frac{1}{200} = 0.005$

Hence the estimate 5,0 21.1975 is at most 0.005 away from the actual sum.

(b) By the remainder estimate,
$$R_n < \int_0^\infty \frac{1}{x^3} dx = \frac{1}{2n^2}$$

We solve for n so that $\frac{1}{2n^2} < 0.0005$

$$\Rightarrow n^2 > \frac{1}{0.001} = 1000$$

We need n = 32 terms to ensure accuracy to within 0.0005

Theorem. If we add s_n to each side of the inequalities for R_n , we obtain:

$$s_n + \int_{n+1}^{\infty} f(x) \, dx \le s \le s_n + \int_{n}^{\infty} f(x) \, dx.$$

These inequalities provide a lower bound and an upper bound for s, giving a more accurate approximation to the sum of the series than the partial sum s_n alone.

Example. Use the above theorem with n = 10 to estimate the sum of the series $\sum_{n=1}^{\infty} \frac{1}{n^3}$.

The inequalities become

$$S_{10} + \int_{11}^{\infty} \frac{x_3}{1} dx \le S \le S_{10} + \int_{10}^{10} f(x) dx$$

Since
$$\int_{n}^{\infty} \frac{1}{x^3} dx = \frac{1}{2n^2}$$

$$S_{10} + \frac{1}{2(11)^2} \leq S \leq S_{10} + \frac{1}{2(10)^2}$$

Using
$$S_{10} \approx 1.197532$$
, we get

Note: We can approximate s by the midpoint of this interval. Then the error is at most half of the length of the interval.

Thus: $\sum_{n=1}^{\infty} \frac{1}{n^3} \approx 1.2021$ with error < 0.0005

Remark. If we compare this to the previous example, we see that the improved estimate for s can be much better than the estimate $s \approx s_n$. To make the error smaller than 0.0005, we had to use 32 terms in the previous example, but only 10 terms in the example above.