
11.3 The Integral Test and Estimates of Sums

In general, it is di�cult to find the exact sum of a series. We were able to accomplish this for

geometric series and for some telescoping series because in each of those cases we could find a

simple formula for the nth partial sum sn. But usually it isn’t easy to discover such a formula.

Therefore, we develop several tests that enable us to determine whether a series is convergent or

divergent without explicitly finding its sum. The first test involves improper integrals.

Theorem. Suppose f(x) is a continuous, positive, decreasing function on [1,1) and let

an = f(n).

1. If

Z 1

1
f(x) dx is convergent, then

1X

n=1

an is convergent.

2. If

Z 1

1
f(x) dx is divergent, then

1X

n=1

an is divergent.

Proof.

• Show that a2 + a3 + · · ·+ an 
R n
1 f(x) dx

• Show that
R n
1 f(x) dx  a1 + a2 + · · ·+ an�1

1

PRAM az + az + ... + an represents the

↳ area of the shaded rectangles,

which is less than or equal to

the totel area under the curve
.

LRAM a + az + ... + an-1 represents the

↳
area of the shaded rectangles,
which is greater than or equal
to the total area under the curve.



• If

Z 1

1
f(x) dx is convergent, show that

X
an is convergent.

• If

Z 1

1
f(x) dx is divergent, show that

X
an is divergent.

2

We will show Esn3 is an increasing ,
bounded sequence.

This will imply that ESn] converges by the Monotonic

Sequence theorem. By definition ,
this will showan converges.

Increasing : we need to show Sn > Sn ·
Since ant = fln+)

and f(x) is a positive function
, Sn < Sn + an+= Sn+

Bounded : az + az +... + an](" f(x)dx19% f(x)dx
added a [
to both

So
...
Sna+ /if(x)dx = M

,
where M is some finite constant.sides

Conclude : SnYM for all n
.
Hence ESng is bounded above.

Recall : 1"f(x)dxxa , + 92 +... + an-1
= Sn-

Since Sf(x)dx- > - as nero
,
sn- +o as well

.

Since So, b Su this implies Supp ,
and so han diveges.



Remark. When we use the Integral Test, it is not necessary to start the series or the integral

at n = 1. For instance, in testing the series:

1X

n=4

1

(n� 3)2
,

we use: Z 1

4

1

(x� 3)2
dx.

Also, it is not necessary that f be always decreasing. What is important is that f be

ultimately decreasing, that is, decreasing for x larger than some number N . Then
P1

n=N an
is convergent, so

P1
n=1 an is convergent.

Example. Test the series:
1X

n=1

1

n2 + 1

for convergence or divergence.

3

The function f(x)= is continuous
, positive,

and decreasing

on [1
,
2)

,
so the Integral Test applies.

10dxin
= Im [tan]
= Lim (tan" (t)-tan()

= lim fan't - lim faill
t+y t+x

=

=

Thus
,

1% xi dx converges .

So
, by the Integral Test,

the saries& converges as well



Theorem. A p-series is a series of the form:

1X

n=1

1

np
,

where p is a real number. The behavior of the series depends on the value of p. In particular,

it is convergent if p > 1 and divergent if p  1.

4

· If pso :lim p
=

0
. By the Test for Diverge,n

the series diverges.

If p = 0

:/in t = Im = 1
. By the Test for Divergea

the series diverges.

If p>0 : The function f(x) = ↑ is continuous
, positive,

and decreasing on [1
, N). The Integral Test applies.

In 57 . 8
,

we showed 90 dx
converges if psland a

diverges if Osp-1 . The same can be said for the series

by the Integral Test.



Example. Determine if the series

1X

n=1

1

n3
is convergent or divergent.

Example. Determine if the series

1X

n=1

1

n1/3
is convergent or divergent.

Example. Determine whether the series

1X

n=1

lnn

n
converges or diverges.

5

This is a

p-series with p = 3
. Since 321

,
the series converges

.

This is a peseries with p
= 5 . Since 1

,
the series diverges.

/WebAssign
-- not a p-series

The function f(x) = lux is positive and continuous for X31 .

To show f(x) is decreasing ,
we compute the derivative :

f(x) =

X Y - 1x
=

1-1nX

X2
XZ

f'(x) > 0 When Inx)
,

that is
,
when Xhe . So f is decreasing whene.

Apply the Integral Test :

golx dx =im xdx =(C)
=Lim Let -Dima

Since the integral diverges, the series&n diverges by the Integel Test.



Estimating the Sum of a Series

Suppose we have been able to use the Integral Test to show that a series
P

an is convergent and

we now want to find an approximation to the sum s of the series. Any partial sum sn is an

approximation to s because limn!1 sn = s. But how good is such an approximation? To find out,

we need to estimate the size of the remainder :

Rn = s� sn = an+1 + an+2 + an+3 + · · ·

Theorem. Suppose f(k) = ak, where f is a continuous, positive, decreasing function for

x � n, and
P

an is convergent. If Rn = s� sn, then:

Z 1

n+1
f(x) dx  Rn 

Z 1

n
f(x) dx.

(a) Upper bound for Rn (b) Lower bound for Rn

6

S-Sn = Actual - Estimate = Rn = Anx + autz + 91t3H ...
= Sum of the rectangles

For Xin
, compare the areas of the rectangles to the area

under the curve

From (a)
,
En -) 90f(x) dx

From (b)
, On = Sf(x)



Example.

(a) Approximate the sum of the series

X 1

n3
by using the sum of the first 10 terms. Estimate

the error involved in this approximation.

(b) How many terms are required to ensure that the sum is accurate to within 0.0005?

7

↑

D

Note : f(x)= satisfies the conditions for the Integral Test

(positive ,
continuous

, decreasing
for X21)

(a) 50=+ 19

According to the remainder estimate,

En Cdx=m dx
=n (-T

=Im-=
=> Rioto= = 0. 00

Hence the estimate SoFL
. 1975 is at most 0.005 away

from the actual sum.

(b) By the remainder estimate
, In /0 dx=

We solve for n so that <0 .000s

=> nc = 1000

=> n > No 31
. 6

We need n = 32 terms to ensure

accuracy
to within 0

. 000s



Theorem. If we add sn to each side of the inequalities for Rn, we obtain:

sn +

Z 1

n+1
f(x) dx  s  sn +

Z 1

n
f(x) dx.

These inequalities provide a lower bound and an upper bound for s, giving a more accurate

approximation to the sum of the series than the partial sum sn alone.

Example. Use the above theorem with n = 10 to estimate the sum of the series

1X

n=1

1

n3
.

Remark. If we compare this to the previous example, we see that the improved estimate for s can

be much better than the estimate s ⇡ sn. To make the error smaller than 0.0005, we had to use 32

terms in the previous example, but only 10 terms in the example above.

8

The inequalities become

So + 14 dx psp S0 + 9% f(x)d

Since 90dx=

S10+ PS = So+to

Using So 1 . 197532
, we get

1
. 201664XSP1 .

2023321/
The length of this

interval is 0
. 000868

Ne : We can approximate s by the midpoint
of this interval

. Then the error is at

most half of the length of the interval.

Thus :& 1
. 2021 with error < 0, 0005


