
§11.2 Practice Problems

True/False. Justify your answer or give a counterexample.

1. If
∑

an diverges, then an must approach infinity.

Solution: False. Counterexample: an = (−1)n does not approach infinity, yet the
series diverges.

2. If limn→∞ an = 0, then
∑

an converges.

Solution: False. Counterexample: an =
1

n
.

3. If |r| < 1, the geometric series
∑∞

n=1 ar
n converges to a

1−r
.

Solution: False. The series converges to
ar

1− r
.



Determine if the series converges or diverges. If it converges, find the limit.

1.
∞∑
n=1

1

n(n+ 2)

Solution: First, use partial fraction decomposition:

1

n(n+ 2)
=

A

n
+

B

n+ 2
.

Multiplying both sides by n(n+ 2), we obtain:

1 = A(n+ 2) +Bn.

Setting n = 0 gives 1 = 2A, so A = 1
2
. Setting n = −2 gives 1 = −2B, so B = −1

2
.

Thus, we rewrite the term:

1

n(n+ 2)
=

1/2

n
− 1/2

n+ 2
.

Now, consider the partial sum:

sN =
N∑

n=1

(
1

2n
− 1

2(n+ 2)

)
.

Expanding the sum:

sN =
1

2

(
1

1
− 1

3
+

1

2
− 1

4
+

1

3
− 1

5
+ · · ·+ 1

N
− 1

N + 2

)
.

This is a telescoping series, where most terms cancel, leaving:

sN =
1

2

(
1 +

1

2
− 1

N + 1
− 1

N + 2

)
.

Taking the limit as N → ∞,

lim
N→∞

sN =
1

2

(
1 +

1

2
− 0− 0

)
=

1

2
· 3
2
=

3

4
.

Thus, the sum converges to:
∞∑
n=1

1

n(n+ 2)
=

3

4
.
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2.
∞∑
n=0

(
−1

2

)n

Solution: For a geometric series
∑∞

n=0 ar
n, the sum converges if |r| < 1 and equals

a
1−r

. Here, a = 1 and r = −1
2
, so

∞∑
n=0

(
−1

2

)n

=
1

1−
(
−1

2

) =
1

1 + 1
2

=
1
3
2

=
2

3
.

3.
∞∑
n=1

n2

4n2 + 1

Solution: As n → ∞,
n2

4n2 + 1
∼ n2

4n2
=

1

4
.

Hence the terms do not go to 0; in fact, they behave like 1
4
for large n. For a series

to converge, its terms must approach 0. Since they do not, the series diverges by the
Test for Divergence.

4.
∞∑
n=1

5

2n

Solution: This is a geometric series with first term 5
2
(when n = 1) and common

ratio 1
2
.

∞∑
n=1

(
5

2

)n

=
5
2

1− 1
2

= 5.
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5.
∞∑
n=1

(
2

n(n+ 1)
+

1

3n

)

Solution: Split the series:
∞∑
n=1

2

n(n+ 1)
+

∞∑
n=1

1

3n
.

First part: Use partial fraction decomposition:

2

n(n+ 1)
= 2

(
1

n
− 1

n+ 1

)
.

The partial sum is:

sN =
N∑

n=1

2

(
1

n
− 1

n+ 1

)
.

Expanding:

sN = 2

(
1

1
− 1

2
+

1

2
− 1

3
+

1

3
− 1

4
+ · · ·+ 1

N
− 1

N + 1

)
.

This is a telescoping series where most terms cancel, leaving:

sN = 2

(
1− 1

N + 1

)
.

Taking the limit as N → ∞,

lim
N→∞

sN = 2(1− 0) = 2.

Second part: The second sum is a geometric series:
∞∑
n=1

1

3n
.

Using the formula for the sum of an infinite geometric series with first term a = 1
3

and common ratio r = 1
3
:

∞∑
n=1

1

3n
=

1
3

1− 1
3

=
1
3
2
3

=
1

2
.

Adding the results:

2 +
1

2
=

5

2
.

Thus, the sum converges to:
∞∑
n=1

(
2

n(n+ 1)
+

1

3n

)
=

5

2
.
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6.
∞∑
n=1

(−1)n
n

n+ 1

Solution: For a series to converge, its terms must go to 0. Since n
n+1

→ 1, the terms
do not approach 0. Therefore, the series diverges by the Test for Divergence.

7.
∞∑
n=0

3

(
1

3

)n

Solution: This is a geometric series with a = 3 and ratio r = 1
3
. Thus,

∞∑
n=0

(
1

3

)n

=
3

1− 1
3

=
3
2
3

=
9

2
.

8.
∞∑
n=1

(
2n − 1

3n

)

Solution: Split the series:

∞∑
n=1

2n − 1

3n
=

∞∑
n=1

2n

3n
−

∞∑
n=1

1

3n
=

∞∑
n=1

(
2

3

)n

−
∞∑
n=1

(
1

3

)n

.

Each is a geometric series with |r| < 1, so both converge. For the first:

∞∑
n=1

(
2

3

)n

=
2
3

1− 2
3

=
2
3
1
3

= 2.

For the second:
∞∑
n=1

(
1

3

)n

=
1
3

1− 1
3

=
1
3
2
3

=
1

2
.

Hence, the overall sum is

2− 1

2
=

3

2
.

So it converges and the sum is 3
2
.
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