
11.11 Taylor Series Remainder Estimate

When we approximate a function using a Taylor polynomial, we leave out the rest of the infinite

series. The di!erence between the function and the polynomial is called the remainder, and

understanding this error is crucial for determining the accuracy of our approximation. The Taylor
remainder estimate gives a bound on this error and allows us to guarantee how close the Taylor

polynomial is to the true function value.

This estimate is especially important when we use Taylor polynomials for numerical approx-

imation, such as estimating values like ex, sinx, or ln(1 + x), where knowing how accurate the

approximation is can guide how many terms we need.

Example. Let

f(x) =

{
e→1/x2

if x →= 0,

0 if x = 0.

Show that the Maclaurin series for f(x) does not represent the function on any interval around 0.

The series and the function only agree at the point x = 0.

x

f(x)

f(x) = e→1/x2

0

1

· You can show using
the limit definition of the derivative that f()(0)=

for allon (the function is extremely flat near of

· Hence the Maclawin Series is = 0 + Ox +Ox

· But f(x) 0
, except at X=0 .

So the Taylor Series only
matches the function at X= 0.

Conclusion : just because a Taylor Series conveyes to something
,

doesn't mean it conveyes
to the function.

Therefore
,
we need something like the Taylor remainder

estimate to help check whether the polynomial approximates
the function well.



Question. The function f(x) in the previous example has all derivatives equal to 0 at x = 0, so

its Maclaurin series is the zero series. But for x →= 0, f(x) is positive, so the Taylor series does not
equal the function. This leads to an important question: When does a Taylor series actually equal
the function? The following theorem answers this question.

Theorem (Taylor Remainder). Let f(x) be a function with an nth-degree Taylor polynomial

Tn(x) centered at a. Define the remainder as:

Rn(x) = f(x)↑ Tn(x).

If lim
n↑↓

Rn(x) = 0 for |x ↑ a| < R, then f is equal to the sum of its Taylor series on the

interval |x↑ a| < R.

In trying to show that limn↑↓Rn = 0 for a specific function f(x), we usually use the following

theorem.

Theorem (Taylor’s Inequality). If
∣∣f (n+1)

(x)
∣∣ ↓ M for |x ↑ a| ↓ d, then the remainder

Rn(x) of the Taylor series satisfies

|Rn(x)| ↓
M

(n+ 1)!
|x↑ a|n+1

for |x↑ a| ↓ d.

Example. Prove that ex is equal to the sum of its Maclaurin series.
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We want to

bound

1 f(n+1)(x))

by M on

this interval

&
[ ↑ J

a real number X a

↓
· Fix XER

.

We want to show Pn(X)- > 0 I
d

I d
· Let d be any positive number with Ix/d

,
then /fluti (x)) = e** ed

·

Apply Taylor's Inequality with a = 0 and M=ed :

IRn(x)l Ped It &abita,e
-d d

· Hence

O lim (Rn())min
n+x

· Conclude : Since X was arbitrary, ex equals the sum of its Maclarin

series for all X
.



Example. Recall the Maclaurin series for sinx:

sinx =

↓∑

n=0

(↑1)
n x2n+1

(2n+ 1)!

Prove that this represents sinx for all x.
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· Fix
any XEM

.

We want to use Taylor's Inequality to show Pn(x)+ o

The derivatives of sinx are either Isinx or Ecosx
,
all of which

are bounded by 1 in absolute value·

· Take M = 1 and apply Taylor's inequality with a = 0 :

IP(x)=
· As nee

, o blin In Pim
· By the Squeeze theorem, Rn(x) +o (since-1R(x)/(RIPn(x))

By the Taylor Remainder There , sinx equals the sun

of its Maclarrin series for all X.



Example. Find the Taylor series for f(x) = sinx centered at a =
ω
3 and prove that this represents

f(x) = sinx.
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HW Question

*

We compute derivatives and evaluate them at X=
f(x) = Sin X f(π(z) = 5/2

f'(x) = cos X
f'(π(3) = 112

f"(x) =- SinX
f"(π(3) = - 53/z

f(x) = - CX
f()(π(z) = - 1/2

the pattern repeats every
four terms : Vol

,
12
,
-5312,2

The Taylor Series is :

f(x) = f(π(z) + f'(π(z)(X-T(z)+ (x- T(3)2 + f(x -T+..
= Fo(z + E(X - T(z) - E (x-- (x-T +...

Even
Tems

+

old
Terms-

② Fix XEI . We can use Taylor's Inequality to show Pn(x) -> 0

Since the derivatives of sinx are Isinx or EcosX
,
take M =

and a = π13 :

IP(x))X-
As neo

, oin Inim
We conclude Rn(x) +O and so this Taylor sories represents sinx for all x.



When using a Taylor polynomial Tn to approximate a function f , we have to ask the ques-

tions:

• How good an approximation is it?

• How large should we take n to be in order to achieve a desired accuracy?

To answer these questions, we look at the absolute value of the remainder:

|Rn(x)| = |f(x)↑ Tn(x)|.

There are three possible methods for estimating the size of the error:

1. Graph |Rn(x)| = |f(x)↑ Tn(x)| using a calculator or computer.

2. If the series is alternating, use the Alternating Series Estimation Theorem.

3. Use Taylor’s Inequality: If |f (n+1)
(x)| ↓ M , then |Rn(x)| ↓

M

(n+ 1)!
|x↑ a|n+1.

Example.

(a) Approximate f(x) = 3
↔
x by a Taylor polynomial of degree 2 at a = 8.

(b) How accurate is this approximation when 7 < x < 9?
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(a) f(x) = xb f(8) = 2

f'(x) = =x213 f(8) = E =>
Tz(x) = f(8) + f'(8)(X-8)+(-8)

f"(x) = = x
-53

f" (8) = -1
Tz(x) = 2+ (x-8)-gg(x - 8)3

144

This function is(b) Use Taylor's Inequality with n=2 andoy decreasing
We need to bound If(x)) = /Ex

-

%3)
L I

I I I

For XLE
, (f(3)(x))<7013

= 0
. 0021

( I &
Take M= 0

.0021 . Then for 7(X9 -
7 g

192(x)) >M (x-an =
0.o 1 x - 813 , 0002( = 0.000
3 !

Conclude : the approximation is accurate to within 0
. 0004 on 79



Example.

(a) What is the maximum error possible in using the approximation

sinx ↗ x↑ x3

3!
+

x5

5!

when ↑0.3 < x < 0.3? Use this approximation to find sin(12
↔
) correct to six decimal places.

(b) For what values of x is this approximation accurate to within 0.00005?
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(a)· The Maclaurin Series Sinx = X-+
is alternating for all nonzero values of X

,
and the terms

both decrease in size and
go to 0 on -0. 3X10 .3

Since (x11 . The Alternating
Series Estimate

applies.

· The error is at most /=
5048

· If -0
. 3 <X 10.3

,
then 140 . 3 so the error

is at most 13 4
.
3x10

- 8

· sin(12 = sin()=-(020
This is correct to at least 6 decimal places by our error bound.

(b) The error is smaller than 0
. 0000s if

1x17
20

.
00005 = (x17 < 0

.
232 = (x) < (0 .

232)"* = 0.82
S040

Conclude : if - 0
. 82 < X < 0 . 82 , the error is less than 0, 00005



Example.

(a) Approximate f(x) = x1/4 by a degree 3 Taylor polynomial at a = 1.

(b) Use Taylor’s Inequality to estimate the error when x ↘ [0.95, 1.05].
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Example.

(a) Approximate f(x) = ln(1 + 3x) by a degree 3 Taylor polynomial centered at a = 2.

(b) Use Taylor’s Inequality to estimate the error |R3(x)| on the interval [1.8, 2.2]. Round your

answer to six decimal places.
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Example. Use Taylor’s Inequality to determine the minimum number of terms of the Maclaurin

series for ex needed to estimate e0.2 to within 0.000001.
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· The Maclaurin series for 24=
· Taylor's Inequality says /Rn(x)1< Fin

+

where M= /fu
+(x)) on the interal (-0. 2

,
0 .27

· Since fluth)(x) = e* and ex is increasing , so take M = 20.21
. 221

· We want to findn so that

IRn(x))<W 0
. 00

Try successive values of :

n=3: 10 . 27
*
= 0, 0000815 X

n= 4 : (02) = 0
. 00000326 X

n= 3: 10.276 = 0 . 0000000

So
,
the error is less than 100 when n= 3. This means

we need the first 6 terms of the Maclarin series

(since the series starts at n = 0).


