11.10 Taylor and Maclaurin Polynomials

Taylor polynomials approximate functions locally using finite-degree polynomials. They simplify
functions and approximate their behavior near a point. They match a function’s value and deriva-
tives at a given point, making them invaluable in physics, engineering, and numerical computation.

Definition. The Taylor polynomial of degree n for a function f(z) centered at a is given
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Example. Prove that the nth degree Taylor polynomial P, (x) of a function f(z), centered at a,
has the same value and the same derivatives, up to order n, as f(x) at z = a.

e Step 1: Compute the k-th derivative of the Taylor polynomial.
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e Step 2: Evaluate the k-th derivative at x = a.
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e Step 3: Verify the equality for all derivatives up to n.
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Example. Compute the 4th-degree Taylor polynomial for f(z) = e* centered at a = 0. Graph

f(x) = €* and its 1st-, 2nd- and 3rd-degree Taylor polynomials to observe local accuracy near
a=0.
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Steps to Find a Taylor Polynomial

1. Determine the center a of the polynomial and write down the formula
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2. Compute the derivatives f'(z), f/(x),..., f™(z).

3. Evaluate the function and its derivatives at z = a:

f@), f'(), f'(a),..., f™(a).

4. Plug these values into the formula for P, (z).

Example. Find the 3rd-degree Taylor polynomial for f(z) = sin(x), centered at a = 0.
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Example. Find the 3rd-degree Taylor polynomial for f(z) = =, centered at a = 2.
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Example. Find the Taylor polynomial of degree 3 for f(x) = In(1 + x) centered at a = 1.




Example. Find the Taylor polynomial of degree 3 for f(z) = arctan(x) centered at a = 0.
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