11.10Taylor and Maclaurin Polynomials

Taylor polynomials approximate functions locally using finite-degree polynomials. They simplify functions and approximate their behavior near a point. They match a function's value and derivatives at a given point, making them invaluable in physics, engineering, and numerical computation.

Definition. The **Taylor polynomial** of degree n for a function f(x) centered at a is given

by:
$$P_n(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n.$$
 If the Taylor polynomial is centered at $a = 0$, it is called a Maclaurin polynomial:

$$P_n(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \dots + \frac{f^{(n)}(0)}{n!}x^n.$$

Example. Prove that the nth degree Taylor polynomial $P_n(x)$ of a function f(x), centered at a, has the same value and the same derivatives, up to order n, as f(x) at x = a.

• Step 1: Compute the k-th derivative of the Taylor polynomial.

$$P_n^{(k)}(x) = \frac{f^{(k)}(a)}{k!} \cdot k! + \text{"terms with (x-a) in them still"}$$

From repeatedly using the power rule. Step 2: Evaluate the k-th derivative at x=a.

At
$$x=a_3$$
 all terms involving $(x-a)$ vanish and we're left with $\int_{0}^{(k)} (a) = f^{(k)}(a)$

• Step 3: Verify the equality for all derivatives up to n.

This process holds for all
$$k \leq n$$
, so $P_n^{(k)}(a) = f^{(k)}(a)$ for $k \leq n$

& At a, the derivatives of the Taylor Polynomial are the same as the derivatives of f **Example.** Compute the 4th-degree Taylor polynomial for $f(x) = e^x$ centered at a = 0. Graph $f(x) = e^x$ and its 1st-, 2nd- and 3rd-degree Taylor polynomials to observe local accuracy near a = 0.

(1)
$$P_{y}(x) = f(0) + f'(0) x + \frac{f''(0)}{2!} x^{2} + \frac{f'''(0)}{3!} x^{3} + \frac{f^{(4)}(0)}{4!} x^{4}$$

$$(2) \quad f(x) = e^{x}$$

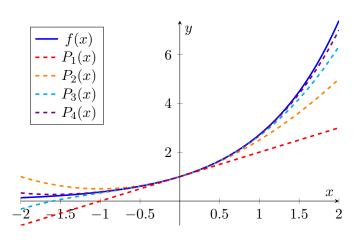
$$f'(x) = e^x$$

$$\frac{1}{4}$$
 $P_{4}(x) = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!}$

$$P_{Y}(x) = 1 + x + \frac{1}{2}x^{2} + \frac{1}{6}x^{3} + \frac{1}{24}x^{4}$$

$$f_2(x) = |+x+\frac{1}{2}x^2$$

$$P_3(x) = 1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3$$



Steps to Find a Taylor Polynomial

1. Determine the center a of the polynomial and write down the formula

$$P_n(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x - a)^n$$

- 2. Compute the derivatives $f'(x), f''(x), \dots, f^{(n)}(x)$.
- 3. Evaluate the function and its derivatives at x = a:

$$f(a), f'(a), f''(a), \ldots, f^{(n)}(a).$$

4. Plug these values into the formula for $P_n(x)$.

Example. Find the 3rd-degree Taylor polynomial for $f(x) = \sin(x)$, centered at a = 0.

①
$$f_3(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3$$

2
$$f(x) = \sin x$$
 3 $f(a) = \sin(a) = 0$
 $f'(x) = \cos x$ $f''(a) = \cos(a) = 1$
 $f'''(x) = -\sin x$ $f'''(a) = -\sin(a) = 0$
 $f'''(x) = -\cos x$ $f'''(a) = -\cos(a) = -1$

$$P_{3}(x) = O + x + \frac{o}{2!} x^{2} - \frac{1}{3!} x^{3}$$

$$P_{3}(x) = x - \frac{x^{3}}{6}$$

Example. Find the 3rd-degree Taylor polynomial for $f(x) = \frac{1}{x}$, centered at a = 2.

②
$$f(x) = \frac{1}{x} = x^{-1}$$

$$f'(x) = -x^{-2} = -\frac{1}{x^2}$$

$$f''(x) = 2x^{-3} = \frac{2}{x^3}$$

$$f'''(x) = -6x^{-4} = \frac{-6}{x^4}$$

3
$$f(z) = \frac{1}{2}$$

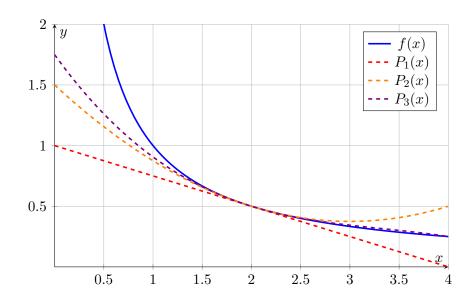
$$f'(2) = -\frac{1}{4}$$

$$f''(2) = \frac{2}{8} = \frac{1}{4}$$

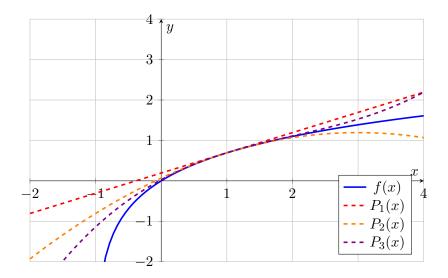
$$f''(2) = \frac{-6}{16} = \frac{-3}{8}$$

(4)
$$P_3(x) = \frac{1}{2} - \frac{1}{4}(x-2) + \frac{114}{2!}(x-2)^2 - \frac{318}{3!}(x-2)^3$$

$$P_3(x) = \frac{1}{2} - \frac{1}{4}(x-2) + \frac{1}{8}(x-2)^2 - \frac{1}{16}(x-2)^3$$



Example. Find the Taylor polynomial of degree 3 for $f(x) = \ln(1+x)$ centered at a = 1.



Example. Find the Taylor polynomial of degree 3 for $f(x) = \arctan(x)$ centered at a = 0.

(1)
$$P_3(x) = f(0) + f'(0) x + \frac{f''(0)}{2!} x^2 + \frac{f'''(0)}{3!} x^3$$

$$f'(x) = \frac{1}{1+x^2} = (1+x^2)^{-1}$$

$$f''(x) = -(1+x^1)^{-2} \cdot 2x = \frac{-2x}{(1+x^2)^2}$$

$$f'''(x) = \frac{(1+x^2)^2 \cdot (-2) - (-2x) \cdot 2 \cdot (1+x^2) \cdot 2x}{(1+x^2)^4} = \frac{-2(1+x^2) + 8x^2}{(1+x^2)^3} = \frac{6x^2 - 2}{(1+x^2)^3}$$

$$f''(0) = \frac{(1+0)^2}{-2.0} = 0$$

$$f'''(0) = \frac{6 \cdot 0^2 - 2}{(1+0)^3} = -2$$

$$P_3(x) = O + 1x + \frac{O}{2!}x^2 + \frac{-2}{3!}x^3$$

$$P_3(x) = x - \frac{1}{3}x^3$$