11.1 Sequences

Question. Is it possible for a person standing in a room to walk to a wall?
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Definition (Infinite Sequence). An infinite sequence, or just a sequence, can be thought
of as a list of numbers written in a definite order:

a1,02,03,04, . ..,0n, ...

The number a; is called the first term, ao is the second term, and in general a, is the nth
term. Each term a, has a successor a,4.

Notice that for every positive integer n, there is a corresponding number a,, so a sequence
can be defined as a function f whose domain is the set of positive integers. Typically, we
write a,, instead of f(n) to denote the value of the function at n.

Notation: The sequence {ay, as,as, ...} is also denoted by:

{an} or {an}niy.

Unless otherwise stated, it is assumed that n starts at 1.




Example. The sequence of distances walked by a man in Zeno’s paradox can be described as:
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What are three equivalent descriptions of this sequence?
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Example. Write the first few terms of the sequence
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Example. Rewrite the sequence {M}f;l in an equivalent way, but start with n = 3
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Example. Find a formula for the general term a,, of the sequence:

34 5 6T
5 25'125" 625 3125°

assuming that the pattern of the first few terms continues.
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Example. Give an example of a sequence that doesn’t have a simple defining equation.
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The Limit of a Sequence

Example. Represent the sequence
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graphically. What happens as n becomes large?
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Definition (Intuitive Definition of a Limit

L, and we write:

lim a, =L or
n—oo

sequence diverges (or is divergent).

a,

of a Sequence). A sequence {a,} has the limit

ap, — L as n — oo,

if we can make the terms a,, as close to L as we like by taking n sufficiently large.

If lim, o a,, exists, the sequence is said to converge (or be convergent). Otherwise, the
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Definition (Precise Definition of a Limit of a Sequence). A sequence {a,} has the limit L,

and we write:
lim a, =L or a, —>L as n— oo,
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Definition. A sequence diverges if its terms do not approach a single number. The notation

lim a, = c©
n—oo

means that for every positive number M there is an integer IV such that if n > NN then

ap > M.

Example. Explain why the following sequences are divergent.
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Properties of Convergent Sequences 7
Theorem. If lim, ,~, f(z) = L and f(n) = a,, when n is an integer, then lim,,_, a, = L
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Sum Law
Difference Law
Constant Multiple Law

Product Law

Quotient Law

Limit Laws for Sequences. Let {a,} and {b,} be convergent sequences, and let ¢ be a
constant. The following limit laws hold:

lim (ay, + b,) = lim a, + lim b,

lim (a, — by) = lim a, — lim b,

lim (ca,) =c- lim a,
n—oo n—oQ

lim (a,b,) = lim a, - lim b,
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Power Law for Sequences. If lim, . a, = A, a, > 0 and p > 0, then:

lim (a?) = [ lim anr = AP,
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Squeeze Theorem for Sequences. Let {a,}, {b,}, and {c,} be sequences such that a, <
by, < ¢, for all n > ng (for some ng). If limy, o0 ap = limy, o0 ¢, = L, then lim,,_o0 by, = L.

Theorem. If lim,,_, |a,| = 0, then lim,_,~ a, = 0.
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Example. Find lim .
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Example. Determine whether the sequence a,, = ——— is convergent or divergent.
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Example. Determine whether the sequence a,, = (—1)" is convergent or divergent.

a, A

1 -T- [ ] [ ] [ ]

0f 1 2 3 4 n
—1 T L4 ° ° °

TMe, terms oscillate as N o  So +he Sequence

s diver 3en\'.



o (=1)”
Example. Evaluate lim
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if it exists.
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Theorem. If lim, ., a, = L and the function f is continuous at L, then:

lim f(a,) = f(L).
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Monotonic and Bounded Sequences

Definition. A sequence {a,} is called increasing if a, < a,y; for all n > 1, that is,
a1 < ag < ag < ---. It is called decreasing if a,, > a,41 for all n > 1. A sequence is called
monotonic if it is either increasing or decreasing.

Example. Show that the sequence a, = is decreasing.
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Example. Show that the sequence a, = 27:_ 1 is decreasing.
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Definition. A sequence {a,} is bounded above if there is a number M such that:
ap < M foralln>1.

A sequence is bounded below if there is a number m such that:
m<a, foralln>1.

If a sequence is bounded above and below, then it is called a bounded sequence.

Example. Give an example of a sequence that is bounded below but not above.
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Example. Give an example of a bounded sequence.
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Example. True or False: every bounded sequence is convergent.
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Example. True or False: every monotonic sequence is convergent.
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Example. True or False: every bounded, monotonic sequence is convergent.

True
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Theorem. Every bounded, monotonic sequence is convergent.
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In other words:
e A sequence that is increasing and bounded above converges.

e A sequence that is decreasing and bounded below converges.
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