10.4 Calculus in Polar Coordinates

Theorem. Let $r = f(\theta)$ be a continuous function defining a curve in polar coordinates. The area A enclosed by the curve between the angles $\theta = a$ and $\theta = b$ is given by

$$A = \int_a^b \frac{1}{2} r^2 \, d\theta.$$

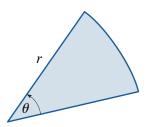
The area is interpreted as being swept out by a rotating ray through the origin O that starts at angle a and ends at angle b.

Proof.

1. What is the area of a sector of a circle?

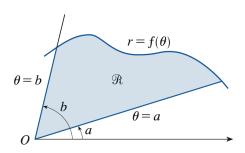
A sector with angle
$$\Theta$$
 (in radians) is $\frac{\Theta}{2\pi}$ of the full circle

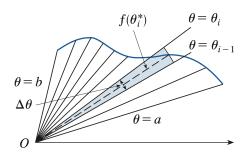
Hence
$$A = \frac{\theta}{2\pi} \cdot \pi r^2 = \frac{1}{2} r^2 \theta$$



$$f(\theta) \ge 0$$
 and $0 < b - a \le 2\pi$

2. Consider the area enclosed by the polar curve $r = f(\theta)$ between angles $\theta = a$ and $\theta = b$.





- Divide the interval [a,b] into n subintervals of equal width $\Delta\theta$.
- Let $\theta_0, \theta_1, \dots, \theta_n$ be points in the interval such that $\theta_0 = a$ and $\theta_n = b$.
- Choose sample points θ_i^* in each subinterval.
- What is the approximate area of the sector formed in each small interval $[\theta_{i-1}, \theta_i]$?

1

Each small region is approximately a circular sector with radius
$$f(\theta_i^*)$$

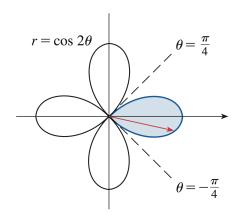
 $A_i \approx \frac{1}{2} \left[f(\theta_i^*) \right]^2 \Delta \theta$

3. Sum over all small sectors to get a formula for the total area.

$$A \approx \sum_{i=1}^{n} \frac{1}{2} \left[f(\theta_{i}^{*}) \right]^{2} \Delta \theta \qquad \text{def. of integral}$$

$$A = \lim_{n \to \infty} \sum_{i=1}^{n} \frac{1}{2} \left[f(\theta_{i}^{*}) \right]^{2} \Delta \theta = \int_{a}^{b} \frac{1}{2} \left[f(\theta) \right]^{2} d\theta$$
Since $r = f(\theta)$, we often write $A = \int_{a}^{b} \frac{1}{2} r^{2} d\theta$

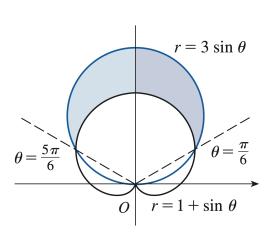
Example. Find the area enclosed by one loop of the four-leaved rose $r = \cos 2\theta$.



The region enclosed by one loop is swept out as
$$\theta$$

moves from $-\frac{\pi}{4}$ to $\frac{\pi}{4}$
 $\cos^2(\theta) = \frac{1}{2}(1+\cos 2\theta)$
 $A = \int_a^b \frac{1}{2} r^2 d\theta = \frac{1}{2} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \cos^2(2\theta) d\theta = \frac{1}{2} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{1}{2} \left(1+\cos(4\theta)\right) d\theta$
 $= \frac{1}{4} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} 1 d\theta + \frac{1}{4} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \cos(4\theta) d\theta = \frac{1}{4} \left[\theta\right]_{-\frac{\pi}{4}}^{\frac{\pi}{4}} + \frac{1}{4} \left[\frac{1}{4} \sin(4\theta)\right]_{-\frac{\pi}{4}}^{\frac{\pi}{4}}$
 $= \frac{1}{4} \left(\frac{\pi}{4} - \left(-\frac{\pi}{4}\right)\right) = \frac{\pi}{8}$

Example. Find the area of the region that lies inside the circle $r = 3 \sin \theta$ and outside the cardioid $r = 1 + \sin \theta$.



Note: We missed the ongin.

- · on 3 sind, it occurs
 at (0,0) and (0,7)
- $\frac{\theta = \frac{\pi}{6}}{\theta} \quad \text{on Itsind, it accurs}$ $\frac{\partial}{\partial \theta} = \frac{\partial}{\partial \theta} \quad \text{otherwise}$

Draw the graphs to make sure you get every intersection point

$$\Rightarrow 2 \sin \theta = 1$$

$$\Rightarrow \sin \theta = \frac{1}{2} , \text{ so } \theta = \frac{\pi}{6} \text{ or } \frac{5\pi}{6}$$

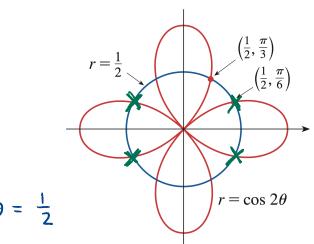
$$A = \frac{1}{2} \int_{0}^{\frac{\pi}{6}} (3\sin\theta)^{2} d\theta - \frac{1}{2} \int_{0}^{\frac{\pi}{6}} (1+\sin\theta)^{2} d\theta$$

$$= \frac{1}{2} \int_{\frac{\pi}{6}}^{\frac{5\pi}{6}} 8 \sin^2 \theta - 2 \sin \theta - 1 d\theta$$

> Trig identify

$$= \frac{1}{2} \int_{\frac{\pi}{6}}^{5\pi} 8 \cdot \frac{1}{2} (1 - \cos 2\theta) - 2\sin \theta - 1 d\theta$$

Example. Find all points of intersection of the curves $r = \cos 2\theta$ and $r = \frac{1}{2}$.



Solve
$$\cos 2\theta = \frac{1}{2}$$

$$20 = \pm II + 2nII$$
 for integers n

$$\theta = \pm \pi + n\pi$$
 for integers n

The values in
$$[0,2\pi]$$
 are $\theta = \frac{\pi}{6}$, $\frac{5\pi}{6}$, $\frac{7\pi}{6}$, $\frac{11\pi}{6}$

From the graph, there are 4 more. These occur when $r=-\frac{1}{2}$.

Intersecting
$$r = \cos(2\theta)$$
 with $r = -\frac{1}{2}$ gives the following points:

Theorem (Arc Length in Polar Coordinates). Let $r = f(\theta)$ define a smooth polar curve over the interval $a \le \theta \le b$. The arc length L of this curve is given by

$$L = \int_{a}^{b} \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} \, d\theta.$$

Proof.

1. Express the Cartesian coordinates of the polar curve $r = f(\theta)$ in terms of θ .

$$X = r(0)\theta = f(\theta)\cos\theta$$
 $y = r\sin\theta = f(\theta)\sin\theta$

2. Differentiate both equations with respect to θ , using the Product Rule.

$$\frac{dx}{d\theta} = \frac{dr}{d\theta}\cos\theta - r\sin\theta$$

$$\frac{dy}{d\theta} = \frac{dr}{d\theta}\sin\theta + r\cos\theta$$

3. The arc length formula for a parametrically defined curve is given by:

$$L = \int_{a}^{b} \sqrt{\left(\frac{dx}{d\theta}\right)^{2} + \left(\frac{dy}{d\theta}\right)^{2}} d\theta.$$

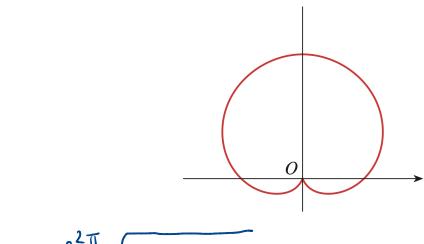
Substitute the expressions for $\frac{dx}{d\theta}$ and $\frac{dy}{d\theta}$ and simplify.

$$L = \int_{0}^{b} \sqrt{\left(\frac{\ln \cos \theta - r\sin \theta}{d\theta}\right)^{2} + \left(\frac{dr}{d\theta}\sin \theta + r\cos \theta\right)^{2}} d\theta$$

$$L = \int_{a}^{b} \sqrt{\left(\frac{dr}{d\theta}\right)^{2} \cos^{2}\theta - 2r\frac{dr}{d\theta} \sin\theta \cos\theta + r^{2} \sin^{2}\theta + \left(\frac{dr}{d\theta}\right)^{2} \sin^{2}\theta + 2r\frac{dr}{d\theta} \sin\theta \cos\theta + r^{2} \cos^{2}\theta} d\theta$$

$$L = \int_{\alpha}^{b} \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} d\theta$$

Example. Find the length of the cardioid $r = 1 + \sin \theta$.



$$L = \int_0^{2\pi} \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} d\theta$$

$$\frac{dr}{d\theta} = \cos\theta$$

$$L = \int_{0}^{2\pi} \sqrt{(1+\sin\theta)^{2} + \cos^{2}\theta} \ d\theta$$

$$= \int_{0}^{2\pi} \sqrt{2+2\sin\theta} \ d\theta$$

To continue... multiply by
$$\sqrt{2-2\sin\theta}$$
 $\sqrt{2-2\sin\theta}$

Theorem (Slope of a Tangent Line to a Polar Curve). Let $r = f(\theta)$ define a polar curve. The slope of the tangent line to the curve is given by

$$\frac{dy}{dx} = \frac{\frac{dr}{d\theta}\sin\theta + r\cos\theta}{\frac{dr}{d\theta}\cos\theta - r\sin\theta}.$$

Horizontal tangents occur when $\frac{dy}{d\theta} = 0$ and $\frac{dx}{d\theta} \neq 0$, while vertical tangents occur when $\frac{dx}{d\theta} = 0$ and $\frac{dy}{d\theta} \neq 0$. Furthermore, if the curve passes through the origin (r = 0), the slope simplifies to

$$\frac{dy}{dx} = \tan \theta \quad \text{if} \quad \frac{dr}{d\theta} \neq 0.$$

Proof.

1. Treat θ as a parameter and express the Cartesian coordinates in terms of θ .

$$X = rcos\theta = f(\theta) cos\theta$$
 $y = rsin\theta = f(\theta) sin\theta$

2. Differentiate both expressions with respect to θ , using the Product Rule.

$$\frac{dx}{d\theta} = \frac{dr}{d\theta} \cos\theta - r\sin\theta \qquad \frac{dy}{d\theta} = \frac{dr}{d\theta} \sin\theta + r\cos\theta$$

3. By the chain rule, the slope of the tangent line is given by:

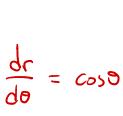
$$\frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} = \frac{dr/d\theta \sin\theta + r\cos\theta}{dr/d\theta \cos\theta - r\sin\theta}$$

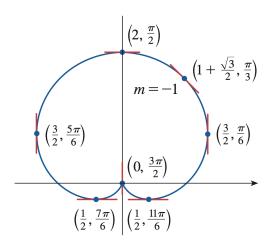
4. At the origin, r = 0. In this case, the formula simplifies to:

$$\frac{dy}{dx} = \frac{dr/d\theta \sin \theta}{dr/d\theta \cos \theta} = \tan \theta, \text{ provided } dr/d\theta \neq 0$$

Example.

- (a) For the cardioid $r = 1 + \sin \theta$, find the slope of the tangent line when $\theta = \frac{\pi}{3}$.
- (b) Find the points on the cardioid where the tangent line is horizontal or vertical.





(a)

$$\frac{dy}{dx} = \frac{\frac{dr}{d\theta} \sin\theta + r\cos\theta}{\frac{dr}{d\theta} \cos\theta - r\sin\theta} = \frac{\cos\theta \sin\theta + (1+\sin\theta)\cos\theta}{(1+\sin\theta)\sin\theta} = \frac{\cos\theta (1+2\sin\theta)}{(1+\sin\theta)(1-2\sin\theta)}$$

When
$$\theta = \frac{\pi}{3}$$
, $\frac{dy}{dx} = \frac{\cos(\pi/3)(1+2\sin\pi/3)}{(1+\sin\pi/3)(1-2\sin\pi/3)} = -1$

(6)

$$\frac{dy}{d\theta} = 0 \quad \text{when} \quad \theta = \frac{\pi}{2}, \frac{3\pi}{2}, \frac{7\pi}{6}, \frac{11\pi}{6}$$

$$\frac{dx}{d\theta} = 0 \quad \text{when} \quad \theta = \frac{3\pi}{2}, \frac{\pi}{6}, \frac{5\pi}{6}$$

$$V. \text{ tangents}$$