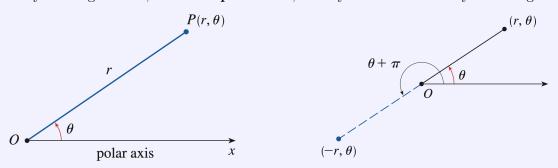
Polar Coordinates 10.3

Definition. The polar coordinate system is defined by:

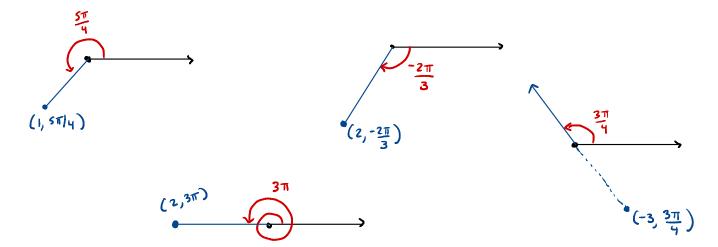
- A point called the **pole** (or origin), denoted by O.
- A ray starting from O, called the **polar axis**, usually drawn horizontally to the right.



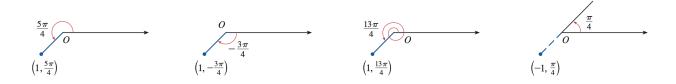
- A point P in the plane is represented by the ordered pair (r, θ) , where:
 - \circ r is the distance from O to P.
 - \circ θ is the angle (in radians) between the polar axis and the line OP.
- An angle is positive if measured counterclockwise and negative if measured clockwise.
- If r < 0, the point (r, θ) lies on the opposite side of the pole, at the same distance |r|.

Example. Plot the points with the following polar coordinates:

- (a) $(1, \frac{5\pi}{4})$
- (b) $(2,3\pi)$
- (c) $(2, -\frac{2\pi}{3})$ (d) $(-3, \frac{3\pi}{4})$



Remark. In the Cartesian coordinate system every point has only one representation, but in the polar coordinate system each point has many representations. For instance, the point $(1, 5\pi/4)$ could be written as $(1, -3\pi/4)$ or $(1, 13\pi/4)$ or $(-1, \pi/4)$.

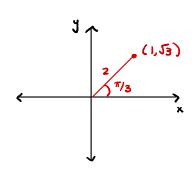


Example. Convert the point $(2, \frac{\pi}{3})$ from polar to Cartesian coordinates.

$$X = r \cos \theta = 2 \cos \left(\frac{\pi}{3}\right) = 2 \cdot \frac{1}{2} = 1$$

$$Y = r \sin \theta = 2 \sin \left(\frac{\pi}{3}\right) = 2 \cdot \frac{5}{2} = 5$$

The Cartesian coordinates are (1,53)



Example. Convert the Cartesian point $(-1, -\sqrt{3})$ to polar coordinates.

$$T = \int x^{2} + y^{2} = \int (-1)^{2} + (-\sqrt{3})^{2} = \int 1 + 3 = 2$$

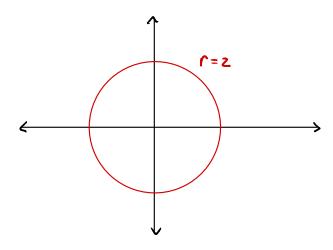
$$\theta = \tan^{-1}(\frac{y}{x}) = \tan^{-1}(\frac{-\sqrt{3}}{x}) = \tan^{-1}(\sqrt{3}) = \frac{4\pi}{3}$$
Adjust for the correct quadrant: $\theta = \frac{\pi}{3} + \pi = \frac{4\pi}{3}$

The polar coordinates are $(2, \frac{4\pi}{3})$

Definition. The graph of a polar equation $r = f(\theta)$, or more generally $F(r, \theta) = 0$, consists of all points P that have at least one polar representation (r, θ) whose coordinates satisfy the equation.

Example. What curve is represented by the polar equation r = 2?

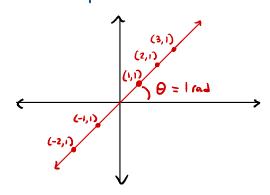
The curve consists of all points (r,0) with r=2



In general, the equation r= a represents a circle with radius lal.

Example. Sketch the polar curve $\theta = 1$.

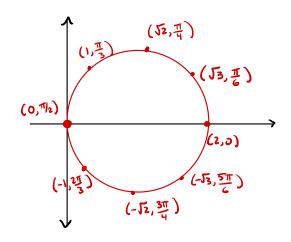
The curve consists of all points (1,0) where the polar angle is I radian



Note: The points (1,9) on the line with 1>0 are in the first quadrant, whereas those with 1<0 are in the third quadrant.

Example. Sketch the curve $r = 2\cos\theta$ and convert it to a Cartesian equation.

θ	$r=2\cos heta$		
0	2		
$\pi/6$	$\sqrt{3}$		
$\pi/4$	$\sqrt{2}$		
$\pi/3$	1		
$\pi/2$	0		
$2\pi/3$	-1		
$3\pi/4$	$-\sqrt{2}$		
$5\pi/6$	$-\sqrt{3}$		
π	-2		



From $x = r\cos\theta$, we have $\frac{x}{r} = \cos\theta$

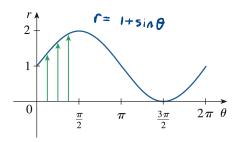
$$\Gamma = 2\cos\theta \Rightarrow r = 2 \cdot \frac{x}{r} \Rightarrow r^2 = 2x \Rightarrow x^2 + y^2 = 2x$$

Completing the square,
$$x^2 - 2x + y^2 = 0 \implies x^2 - 2x + 1 + y^2 = 1$$

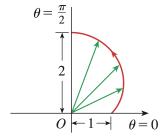
$$\Rightarrow$$
 $(x-1)^2 + y^2 = 1$, a circle centered at (1,0) with radius 1.

Example. Sketch the curve $r = 1 + \sin \theta$.

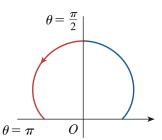
• In Cartesian coordinates, graph the behavior of r for $0 \le \theta \le 2\pi$.



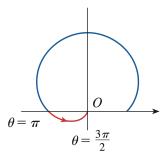
• Analyze the behavior of r for $0 \le \theta \le \pi/2$.



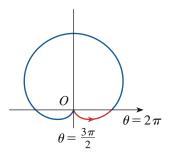
• Analyze the behavior of r for $\pi/2 \le \theta \le \pi$.



• Analyze the behavior of r for $\pi \le \theta \le 3\pi/2$.



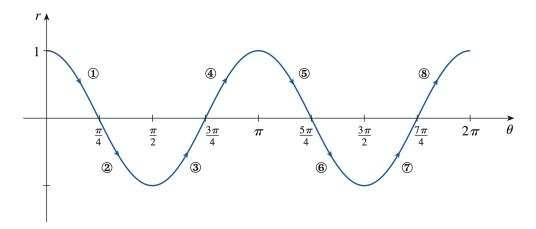
• Analyze the behavior of r for $3\pi/2 \le \theta \le 2\pi$.



This is called a cardioid

Example. Sketch the curve $r = \cos 2\theta$.

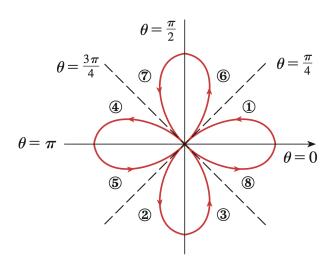
• Sketch $r = \cos 2\theta$ for $\theta \in [0, 2\pi]$. This helps us visualize the values of r as θ varies.



• Analyze the value of r for varying values of θ .

$0 \le \theta \le \frac{\pi}{4}$	$\frac{\pi}{4} \le \theta \le \frac{\pi}{2}$	$\frac{\pi}{2} \leq 0 \leq \frac{3\pi}{4}$	$\frac{3\pi}{4} \leq \theta \leq \pi$
r decreases from	r decreases from	r încreases from -1 to 0	r increases from 0 to 1
Quadrant 1	Quadrant 3	Quadrant 4	Quadrant 2

• The resulting curve will have four loops, forming a four-leaved rose.



Common Polar Curves

