
10.3 Polar Coordinates

Definition. The polar coordinate system is defined by:

• A point called the pole (or origin), denoted by O.

• A ray starting from O, called the polar axis, usually drawn horizontally to the right.

• A point P in the plane is represented by the ordered pair (r, ✓), where:

� r is the distance from O to P .

� ✓ is the angle (in radians) between the polar axis and the line OP .

• An angle is positive if measured counterclockwise and negative if measured clockwise.

• If r < 0, the point (r, ✓) lies on the opposite side of the pole, at the same distance |r|.

Example. Plot the points with the following polar coordinates:

(a) (1, 5⇡4 ) (b) (2, 3⇡) (c) (2,�2⇡
3 ) (d) (�3, 3⇡4 )
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Remark. In the Cartesian coordinate system every point has only one representation, but in the
polar coordinate system each point has many representations. For instance, the point (1, 5⇡/4)
could be written as (1,�3⇡/4) or (1, 13⇡/4) or (�1,⇡/4).

Theorem. The relationship between polar and Cartesian coordinates is given by:

Example. Convert the point (2, ⇡3 ) from polar to Cartesian coordinates.
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Example. Convert the Cartesian point (�1,�
p
3) to polar coordinates.

Definition. The graph of a polar equation r = f(✓), or more generally F (r, ✓) = 0, consists
of all points P that have at least one polar representation (r, ✓) whose coordinates satisfy
the equation.

Example. What curve is represented by the polar equation r = 2?
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The polar coordinates are (2,

The curve consists of all points (r, 0) with r=2
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In general , the equation r= a represents a circle with radius(a).



Example. Sketch the polar curve ✓ = 1.

Example. Sketch the curve r = 2 cos ✓ and convert it to a Cartesian equation.

✓ r = 2 cos ✓
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The curve consists of all points (r, 0)
where the polar angle is I radian
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Note : the points (50) on the line withso are in the

first quadrant, whereas those withso are in the third quadent.
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From X = rcost
,
we have X = cose

r= 2cosOE v = 2. E r = 2x = X+y = 2x

Completing the square, x2
-2x + y

=
= 0 = X2- 2x + 1 +y = 1

=> (X-1)" + y = 1
,
a circle centered at (1

,
0) with radius 1

.



Example. Sketch the curve r = 1 + sin ✓.

• In Cartesian coordinates, graph the behavior of
r for 0  ✓  2⇡.

• Analyze the behavior of r for 0  ✓  ⇡/2.

• Analyze the behavior of r for ⇡/2  ✓  ⇡.

• Analyze the behavior of r for ⇡  ✓  3⇡/2.

• Analyze the behavior of r for 3⇡/2  ✓  2⇡.
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This is called a cardioid



Example. Sketch the curve r = cos 2✓.

• Sketch r = cos 2✓ for ✓ 2 [0, 2⇡]. This helps us visualize the values of r as ✓ varies.

• Analyze the value of r for varying values of ✓.

0  t  ⇡
4

⇡
4  t  ⇡

2
⇡
2  t  3⇡

4
3⇡
4  t  ⇡

• The resulting curve will have four loops, forming a four-leaved rose.
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Common Polar Curves
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