Quiz 9 Outline

Format. This quiz has 3 multiple choice question and 1 free-response questions.

1. Compute the absolute maximum / minimum of a function using the closed interval method.

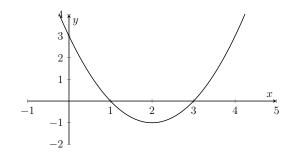
Example: Where does the absolute minimum of the function $f(x) = \ln(x^2 + 1)$ occur on the interval [-1, 1]?

- (a) x = -1
- (b) x = 0
- (c) x = 1
- (d) x = 2
- (e) Does not exist
- 2. Conceptual question about Rolle's Theorem or the Mean Value Theorem.

Example: Suppose f is a function which is continuous and differentiable on the interval [-1,1]. Which of the following conditions would guarantee that f'(c) = 0 for some c between -1 and 1?

- (a) f is a polynomial.
- (b) f(-1) = f(1).
- (c) f has no horizontal tangent lines.
- (d) f has a change in concavity.
- (e) f is increasing.
- 3. Apply the Mean Value Theorem.

Example: The following is a graph of f.



For what value of x does f satisfy the Mean Value Theorem on the interval [1,3]?

- (a) 3
- (b) -1
- (c) 2
- (d) 1
- (e) 0

4. Linear Approximation.

Example: Let $f(x) = \ln(x)$.	
(a) Use a linearization to estimate $ln(0.99)$.	
(b) Is your estimate from part (a) an overestimate or an underestimate? justification.	Provide a

Solutions

Solution: (b)

$$f'(x) = \frac{2x}{x^2 + 1} = 0 \iff x = 0.$$

Evaluate f at the endpoints and the critical point:

$$f(-1) = \ln 2$$
, $f(0) = \ln 1 = 0$, $f(1) = \ln 2$.

The absolute minimum on [-1,1] is 0 at $x=\boxed{0}$ and the absolute maximum is $\ln 2$ at $x=\pm 1$.

Solution: (b)

By Rolle's Theorem, if f is continuous on [-1, 1], differentiable on (-1, 1), and f(-1) = f(1), then there exists c in (-1, 1) with f'(c) = 0.

Solution: (c)

On [1,3], the secant slope is

$$\frac{f(3) - f(1)}{3 - 1} = \frac{0 - 0}{2} = 0.$$

By the Mean Value Theorem, there exists c in (1,3) with f'(c) = 0. The displayed parabola has a horizontal tangent at c = 2.

Solution:

(a) Linearize at a = 1:

$$L(x) = f(1) + f'(1)(x - 1)$$

= 0 + 1 \cdot (x - 1)
= x - 1.

Hence $\ln(0.99) = f(0.99) \approx L(0.99) = 0.99 - 1 = \boxed{-0.01}$.

(b) Since $f''(x) = -\frac{1}{x^2} < 0$ for x > 0, $\ln x$ is concave down. Therefore the tangent line lies above the curve near x = 1, so L(0.99) is an overestimate.