1. (2 points) If $f(x) = \cos(\tan(x))$, compute f'(x).

(a)
$$f'(x) = \cos^2(x) - \sin^2(x)$$

(b)
$$f'(x) = \cos(x)\cos(\tan(x))$$

(c)
$$f'(x) = -\sin(x)\cos(\tan(x))$$

(d)
$$f'(x) = -\sin(\tan(x))\sec^2(x)$$

(e)
$$f'(x) = -\sin(\sec^2(x))$$

2. (3 points) Compute
$$\frac{d}{dx} \left(\sin(e^{\sqrt{x}}) \right)$$
.

- 3. (5 points) Consider the curve defined by $y^2 = \sin(x + y)$.
 - (a) (3 points) Use implicit differentiation to compute $\frac{dy}{dx}$.

(b) (2 points) Find the equation of the tangent line to the curve at the point $(\pi, 0)$.