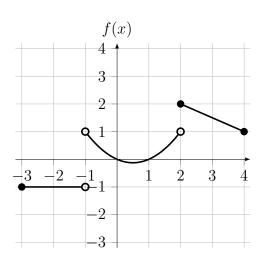
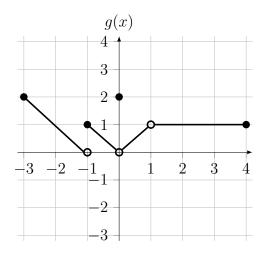

1. (2 points) Consider the function

$$g(x) = \begin{cases} x^2 - 6x + 13, & \text{if } x \le 2, \\ 5x + k, & \text{if } x > 2. \end{cases}$$

What value of k would make g continuous?

- (a) -8
- (b) -5
- (c) -2
- (d) 0
- (e) 3


2. (2 points) Use the following graph of the function f to answer the question below.



At x = -1, the function f

- (a) is continuous.
- (b) is undefined.
- (c) has an infinite discontinuity.
- (d) has a removable discontinuity.
- (e) has a jump discontinuity.

3. (6 points) Use the following graphs of the functions f(x) and g(x) to answer the questions below:

(a) Evaluate the following limit, if it exists. Otherwise, write DNE.

$$\lim_{x \to -1^+} \left(f(x) + g(x) \right)$$

Answer:	

(b) Evaluate the following limit, if it exists. Otherwise, write DNE.

$$\lim_{x \to 1} 3g(x)$$

Answer:

(c) Evaluate the following limit, if it exists. Otherwise, write DNE.

$$\lim_{x \to -1} \left(f(x) \right)^2$$

Answer: