Linear Approximation

- 1. Let $f(x) = \ln(1 + 2x)$ and a = 0.
 - (a) Find the linearization L(x) at x = 0.

(b) Use L(x) to approximate ln(1.06). State the x you plug into L.

(c) Is L(x) an overestimate or an underestimate?

- 2. Let $f(x) = \sqrt[3]{x}$ and a = 8.
 - (a) Find L(x) at a = 8.

(b) Use L to approximate $\sqrt[3]{7.7}$ and $\sqrt[3]{8.2}$. Are these approximations overestimates or underestimates?

- 3. Let $f(x) = \frac{1}{x^2 + 5}$ and a = 1.
 - (a) Find L(x) at x = 1.
 - (b) Use L to approximate f(1.1) and f(0.9) and decide whether L is an overestimate or an underestimate near a=1.

- 4. Let $f(x) = \sqrt{1+x}$ and a = 0.
 - (a) Find L(x).

(b) Use L to estimate $\sqrt{1.04}$ and decide if your estimate is an overestimate or an underestimate.

5. Below are four functions and four linearizations at a = 0. Match each function with its correct L(x) and justify each match by computing f(0) and f'(0).

(I)
$$f(x) = \sqrt{4+x}$$
 at $a = 0$

(A)
$$L(x) = 2x$$

(II)
$$f(x) = \frac{1}{3+x}$$
 at $a = 0$

(B)
$$L(x) = 1 + x$$

(III)
$$f(x) = \sin(2x)$$
 at $a = 0$

(C)
$$L(x) = 2 + \frac{1}{4}x$$

(IV)
$$f(x) = e^x$$
 at $a = 0$

(D)
$$L(x) = \frac{1}{3} - \frac{1}{9}x$$