Linear Approximation

- 1. Let $f(x) = \ln(1+2x)$ and a = 0.
 - (a) Find the linearization L(x) at x = 0.

Solution: L(x) = f'(0)(x - 0) + f(0).

$$f(0) = \ln(1) = 0$$

$$f'(x) = \frac{2}{1+2x}$$
. So $f'(0) = 2$.

$$L(x) = 2x$$

(b) Use L(x) to approximate $\ln(1.06)$. State the x you plug into L.

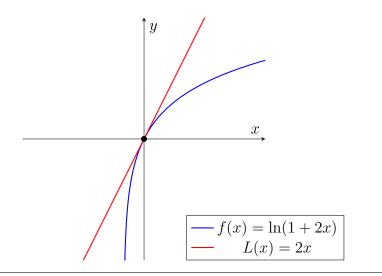
Solution: Set 1 + 2x = 1.06. Then x = 0.03.

$$ln(1.06) = f(0.03) \approx L(0.03) = 2(0.03) = \boxed{0.06}$$

(c) Is L(x) an overestimate or an underestimate?

Solution:

$$f''(x) = -\frac{4}{(1+2x)^2} < 0 \Rightarrow \text{concave down} \Rightarrow \boxed{\text{overestimate}}$$



- 2. Let $f(x) = \sqrt[3]{x}$ and a = 8.
 - (a) Find L(x) at a = 8.

Solution:
$$L(x) = f'(8)(x - 8) + f(8)$$
.
 $f(8) = 2$
 $f'(x) = \frac{1}{3}x^{-2/3}$. So $f'(8) = \frac{1}{12}$
 $L(x) = 2 + \frac{1}{12}(x - 8)$

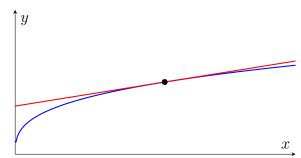
(b) Use L to approximate $\sqrt[3]{7.7}$ and $\sqrt[3]{8.2}$. Are these approximations overestimates or underestimates?

Solution:

$$\sqrt[3]{7.7} = f(7.7) \approx L(7.7) = 2 + \frac{1}{12} \cdot \frac{-3}{10} = \frac{240}{120} - \frac{3}{120} = \boxed{\frac{237}{120}}$$

$$\sqrt[3]{8.2} = f(8.2) \approx L(8.2) = 2 + \frac{1}{12} \cdot \frac{2}{10} = 2 + \frac{1}{60} = \boxed{\frac{121}{60}}$$

Since $f''(x) = -\frac{2}{9}x^{-5/3} < 0$ for x > 0, both are overestimates.



3. Let
$$f(x) = \frac{1}{x^2 + 5}$$
 and $a = 1$.

(a) Find
$$L(x)$$
 at $x = 1$.

Solution:
$$L(x) = f'(1)(x - 1) + f(1)$$
.

$$f(1) = \frac{1}{6}$$

$$f'(x) = -\frac{2x}{(x^2 + 5)^2}. \text{ So } f'(1) = -\frac{1}{18}.$$

$$L(x) = \frac{1}{6} - \frac{1}{18}(x - 1).$$

(b) Use L to approximate f(1.1) and f(0.9) and decide whether L is an overestimate or an underestimate near a = 1.

Solution:

•
$$L(1.1) = \frac{1}{6} - \frac{1}{18} \cdot \frac{1}{10} = \frac{30}{180} - \frac{1}{180} = \boxed{\frac{29}{180}}$$

•
$$L(0.9) = \frac{1}{6} + \frac{1}{18} \cdot \frac{1}{10} = \frac{30}{180} + \frac{1}{180} = \boxed{\frac{31}{180}}$$

Here $f''(1) = \frac{-4}{216} < 0$ (concave down), so overestimates near 1.

- 4. Let $f(x) = \sqrt{1+x}$ and a = 0.
 - (a) Find L(x).

$$f(0) = 1$$

$$f'(x) = \frac{1}{2\sqrt{1+x}}$$
. So $f'(0) = \frac{1}{2}$.

$$\boxed{L(x) = 1 + \frac{1}{2}x}$$

(b) Use L to estimate $\sqrt{1.04}$ and decide if your estimate is an overestimate or an underestimate.

Solution:

$$\sqrt{1.04} = f(0.04) \approx L(0.04) = 1 + \frac{1}{2}(0.04) = \boxed{1.02}.$$

Since $f''(x) = -\frac{1}{4}(1+x)^{-3/2} < 0$, it's an overestimate.

5. Below are four functions and four linearizations at a = 0. Match each function with its correct L(x) and justify each match by computing f(0) and f'(0).

(I)
$$f(x) = \sqrt{4+x}$$
 at $a = 0$

(A)
$$L(x) = 2x$$

(II)
$$f(x) = \frac{1}{3+x}$$
 at $a = 0$

(B)
$$L(x) = 1 + x$$

(III)
$$f(x) = \sin(2x)$$
 at $a = 0$

(C)
$$L(x) = 2 + \frac{1}{4}x$$

(IV)
$$f(x) = e^x$$
 at $a = 0$

(D)
$$L(x) = \frac{1}{3} - \frac{1}{9}x$$

Solution:

• (I)
$$\rightarrow$$
 (C). $f(0) = 2$, $f'(x) = \frac{1}{2\sqrt{4+x}} \Rightarrow f'(0) = \frac{1}{4}$. So $L(x) = 2 + \frac{1}{4}x$.

• (II)
$$\rightarrow$$
 (D). $f(0) = \frac{1}{3}$, $f'(0) = -\frac{1}{9}$. So $L(x) = \frac{1}{3} - \frac{1}{9}x$.

• (III)
$$\rightarrow$$
 (A). $f(0) = \sin 0 = 0$, $f'(x) = 2\cos(2x) \Rightarrow f'(0) = 2$. So $L(x) = 2x$.

• (IV)
$$\rightarrow$$
 (B). $f(0) = 1$, $f'(0) = 1$. $L(x) = 1 + x$.