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2.8 - The Derivative as a Function

The derivative is defined by

/ . fle+h) - fx)

fiz) = lim Y ;
and gives, for each x, the slope of the tangent line to y = f(x) (the instantaneous rate of change).
The domain of f’ consists of the points where this limit exists and is often smaller than the domain
of f. If f is differentiable at a, then f is continuous at a; non-differentiability typically occurs at

corners/cusps, discontinuities, or vertical tangents.

1. Let | b |
I — lim n(z+h) — na

h—0 h
Find a function f(z) such that L = f/(z).

2. Let g(z) = cosz + 5. Use the limit definition of the derivative to write ¢’(z) at a general .

3. Compute the following limit:

lim sin(% + h) — sin(%).
h—0 h
4. Compute the following limit:
. ad —dr— (2°—4.2)
lim .
T—2 r—2

5. Let
ar’ +b, =<2,
flz) =
3z+1, x2>2.

Find constants a, b so that f is differentiable at x = 2.

6. For each function, determine whether it is differentiable at 0. If yes, find f'(0).

(a) g(x) = [a*®
(b) h(x) = z|z|.

(a) Is f continuous at x =17
2 (b) Compute f'(z) for x < 1 and for z > 1.

(¢) Is f differentiable at © = 1?7 Justify using
one—sided slopes.




4.3 - What f’ and f” say about f

The sign of the first derivative f’(z) tells whether f is increasing or decreasing, and |f’(z)| reflects how
steep the graph is. The second derivative f”(z) controls concavity: f” > 0 means concave up, and f” <0

means concave down.

' (z) f(x) What f is doing Schematic of f(z)

__

>0 >0 Increasing; concave up
(slopes becoming more positive).

>0 <0 Increasing; concave down —
(slopes becoming less positive).

/. N\

<0 >0 Decreasing; concave up
(slopes becoming less negative).

<0 <0 Decreasing; concave down —
(slopes becoming more negative). ;

1. For each of the following graphs of f(z), sketch the graph of f/(x).
Yy Y
(i) (ii

A :/

(iii) (iv)



2. Each panel shows y = f'(x). Estimate the following for each of the corresponding f(x):

(a) Where is f increasing?
(b) Where is f decreasing?
(c) Where is f concave up?

)

(d) Where is f concave down?

—1 —1
—2 —2
(1) (i)
2ty 21y
y=['(z) y=['(z)

-4 -3 -2 - _\\j 4 -4 -3 -2 -1 1 2 4
11 14

—2 -2
(iii) (iv)
27y 27y
y=f'(z) y=f'(x)
1 14
1 1 1 1 1 1 1 i | 1 1 1 1 / 1 1 1 i 1
-4 -3 -2 -1 1 2 3 4 -40-3 -2 -1 1 2 NP 4
Z1 -1
-2 —2
v) (vi)



3.1 - Derivatives of Polynomials and Exponential Functions

In this section, we learn the basic rules for differentiating constant functions, power functions, polynomials,

and exponential functions. These rules form the foundation for nearly all differentiation techniques in

calculus.

d
dzx

Constant Function

—(c) = 0.

Constant Multiple

(cf(2)) = cf'(a).

(f(@)+g(x) =

Sum Rule

fl(@) +g'(2).

d

dx

Power Rule

—(2") =nz™! (neR).

Difference Rule

1. Find the derivative:

2. Find the derivative:

3. Find the derivative:

4. Find the derivative:

5. Find the derivative:

6. Find the derivative:

7. Find the derivative:

flx) =2 —224+10
g(z) = %:):3 — 9z + 20
f(t) =12¢¢

F(t) =15 —¢*

8. Find the derivative: y = ———



3.2 - The Product and Quotient Rules

In this section we extend our derivative formulas to products and quotients of functions. The rules below
combine with the constant, power, and exponential rules to handle a wide range of functions.

Product Rule

Leibniz Notation Prime Notation
d d d
(ww) = w0t (f@)g(@) = f@)g(@) + gx) f'()

Quotient Rule

Leibniz Notation Prime Notation

u vde g dv f@)\" _ g2) f'(x) — f(z)g'(z)
AOEE (o) =

1. Differentiate: y = (222 — 5)(z% + 47)

2. Differentiate: f(x) = 22e?*

5
3. Differentiate: g(x) = e—f
4. Differentiate: h(?) -3
. Differentiate: —
B3+1
1
5. Differentiate y = te
3+ e”
2 x
6. Differentiate: y = re
1+x

2
x
7. Find an equation of the tangent line to the curve y = it at the point (2, %)
x

8. Suppose f(2) =3, f'(2) = -1, g(2) = —4, ¢'(2) = 5. Compute:

we. (e (e



3.3 - Derivatives of Trig Functions

In this section we differentiate the six basic trigonometric functions. The formulas are:

—sinx = cosx —cosx = —sinx
dzx dx

_ 2 _ 2
—tanx = sec” x —cotox = —csc”x
dzx dx
—secx = secx tanx — CSCX = —CcScx cotx
dx dzx

1. Differentiate p(t) = 4cost — 3sint.

2. Differentiate y = secx — 2tan x.

d
3. Evaluate Tu (u3 + cot u)

4. Differentiate h(#) = 6% sin @ cos .
5. Differentiate y = cot z + csc z.

6. Find the 205" derivative of sin x.
7. Find the 1900*" derivative of cos .

d
8. Compute %(ex csc ).

d
9. Compute a(secs tan s).

tanx
10. Find f’ if =
0. Fin f(x)l f(a:) 1+ tan?z
CcCoST
11. Find ¢’ if = —
ind ¢'(2) if g(x) = T —

12. Find the tangent line to y = e*sinx + cosz at the point (0,1).

13. Find the tangent line to y = cscx at ¢ = g

14. Find all z in [0, 27r] where the tangent to g(z) = sinz + cosx is parallel to the line y = —z.

15. Find the z in (=7, ) where the slope of the tangent to y = tanz equals 3.



3.4 - The Chain Rule

In this section, we differentiate compositions of functions. To do so, we use the Chain Rule:

Leibniz Notation Prime Notation
dy dy du
I = Ju dr (f(g(x))), = f/(g(x)) gl(x)-

10.

11.

12.

13.

14.

15.

. Differentiate y = sin((3z — 1)*).

. Differentiate y = (cos(2z — 1))5.

. Differentiate y = \/ 1+ cot(z2 — z) .
. Differentiate y = 32¢—sin,

. Differentiate y = (1 =+ 63”3)7.

1
t —_
Differentiate y = e an(ﬁ) for > 0.

Differentiate y = /1 — tan(2x).

. Differentiate y = 2557,
tan x
. Differentiate y = — .
sinx
e’
Differentiate y = —————.
Yy (1 + $4)3/2

Differentiate y = (secx - csc x)4.

Let f, g, h be differentiable. Assume

Define H(z) = h(g(f(z))). Find H'(1).

Let f, g be differentiable. Assume

Define G(z) = ¢(f(z%)). Evaluate G'(V/2).

v 14 cosx

1122 at x = 0.
T

Find the equation of the tangent line to y =

Find all z in [0, 27] where the tangent to y = e~ sinx is horizontal.



3.5 - Implicit Differentiation

When a curve is defined implicitly by an equation relating  and y, we can still find slopes of tangent lines
by treating y as a function y(x) near our points of interest. For more details about why this is possible,

see the Implicit Function Theorem.

Implicit Derivative Process Derivative Patterns (with y = y(z))
. . . d ,
1. Start from the relation. Write the given e vyl =y
x
equation relating the variables x and y. d
—W=ny"ly (neR)
2. Differentiate both sides with respect to z
. d . p
x. Apply derivative rules as needed. o [siny] = cosyy
x

Every time you differentiate a term involving y,

multiply by a factor 3’ = % via the Chain Rule. Ir [cosy] = —sinyy’
€Z
3. Collect 7/-terms. Move all terms contain- di [tany] = sec2y Y
ing 9 to one side and all other terms to the v
opposite side. — Y] =evy
dx
4. Factor and solve for y'. Factor out 3’ and a4 (Y] = a¥In(a) y/'
dx

isolate it to obtain an explicit formula 3y =

%Y in terms of z and 1.
dx

Find % for each implicitly Compute % at the indicated Find the equation of the
defined curve. point. tangent line at the given point.
L 2?2 +aoy+y>="7 9. 2%y + 4% =4 at (0,2) 13. 22 4+ y%? =25 at (3,4)

2. 23 +y® =6y 10. sin(zy) + = = y at (0,0) 14. o+ 2% =2 at (1,1)
3. 2’y +ay* =6 11. e™ +y =22 at (1,0) 15. 2%y +y =z at (0,0)
4. sin(z +y) = zy 12. 2292 +e = 2 at (1,0)

5. cos(zy) +y ==
6. e*Y =22 —y
7. 2% + y? = sin(xy)

8. tany = xe¥




3.9 - Related Rates

In related rates problems, two or more quantities are changing with respect to time. The goal is to find
a relationship between the variables, differentiate with respect to ¢, and connect the given rate(s) to the

unknown rate.

Step-by-step process:

1. Draw a clear diagram and label all changing quantities with variables. Write down the given

information and what you want.
2. Write an equation relating those variables (geometry, trig, physics).
3. Differentiate implicitly with respect to ¢.
4. Substitute all known values at the instant of interest and solve for the desired rate.

e Always include units (e.g., cm?/s, ft/s, rad/s)

e Include correct signs (negative rates for decreasing quantities.)

1. Circles and Spheres

Problems with circles and spheres track how a changing radius r(¢) is related to changes in geometric

quantities like area A, circumference C', volume V', or surface area S.

A=nr? C =2, Vz%ﬂ'r3, S = dnr?

Examples

1. A spherical balloon is being inflated at 60 cubic centimeters per second. When the radius is 5

centimeters, how fast is the radius increasing, and how fast is the surface area increasing?

2. A melting snowball’s surface area is decreasing at 20 square centimeters per minute. When the radius
is 4 centimeters, how fast is the radius changing? Then, at that same moment, how fast is the volume
changing?

3. A circular ripple on a pond is expanding so that its circumference is increasing at 0.5 meters per

second. When the radius is 6 meters, how fast is the area increasing?

2. Rectangles and Boxes

Problems with rectangles and boxes relate changing sides to area, perimeter, volume, or surface area.

Arect = xry, Bect = 2(1' + y)a Veube = 337 Secube = 632




Examples

1. A rectangle’s length is 10 cm and increasing at 2 cm/s; its width is 6 cm and increasing at 3 cm/s.

At that instant, how fast are the area and perimeter increasing?

2. A rectangular garden has a constant area of 24 m2. The length is increasing at 0.6 m/s. When the
length is 6 m, how fast is the width changing? State whether the width is increasing or decreasing.

3. A cube’s volume is increasing at 300 cubic centimeters per second. When the edge length is 10 cm,

how fast are the edge length and the surface area increasing?

3. Cones and Cylinders

Problems with cones and cylinders relate how changing dimensions (radius r(¢) and/or height h(t)) drive
changes in volume. For cones with a fixed shape, r is proportional to h; use similar triangles to eliminate
one variable before differentiating with respect to time.

Veone = 3712 Veyl = 7r2h

Examples

1. A right circular cone points down with height 6 m and top radius 3 m. Water is pumped in at two

cubic meters per minute. How fast is the water depth rising when the depth is 2 m?

2. Dry sand pours onto the ground at one and a half cubic meters per minute, forming a right circular
cone whose radius is always half of its height. How fast is the height of the pile increasing when the
pile is 0.8 m tall? Also report the rate at which the radius is changing at that instant.

3. A vertical cylindrical tank of constant radius 1.5 m has an open top; liquid drains so that the volume
inside decreases at two tenths of a cubic meter per minute. Assuming the radius of the tank is fixed,
how fast is the fluid level (height) falling when the depth is 2 m?

4. Right Triangles: Ladders, Motion, and Shadows

Problems in this family use right—triangles: relate legs and hypotenuse with the Pythagorean Theorem for
ladders or perpendicular motion, and use similar triangles for shadow /spotlight setups.

Ladder (fixed length): 2?4 y? = L? (L constant)

Perpendicular motion: 2+ y? = d? (d is separation)

H h
Streetlamp/person (similar triangles): s s < Hs=h(z+s)
r+s s

Examples

1. A 13-ft ladder leans against a wall. The base slides away from the wall at 2 ft/s. How fast is the top
sliding down when the base is § ft from the wall?

10



2. At a certain instant, Car A is & miles east of an intersection and moving east at 40 mph, while Car
B is 4 miles north and moving north at 30 mph. At that instant, how fast is the distance between
the cars changing?

3. A 6-ft-tall person walks away from a 15-ft streetlamp at 3 ft/s. How fast is the tip of the shadow
moving when the person is 20 ft from the lamp?

5. Rotating Angles

These problems track how an angle (angle of elevation, bearing, or a rotating beam) changes as an object

opposite
adjacent *

moves. Relate the angle 6(t) to a right triangle using tan =

tanfd = ¥
T

Examples

1. An observer on level ground watches a plane flying in a straight line at a constant altitude of 5,000
ft. The plane is moving away from the observer with horizontal speed 400 ft/s. How fast is the angle
of elevation changing when the plane is 12,000 ft horizontally from the observer?

2. A lighthouse stands 2 miles off a straight shoreline. A ship sails parallel to the shore at 12 mph,
away from the lighthouse. How fast is the bearing angle from the lighthouse to the ship changing
when the ship is 4 miles down the coast from the point closest to the lighthouse?

3. A searchlight located 0.5 miles from a straight wall rotates at a constant 0.30 radians per second. How
fast is the light spot moving along the wall when the beam makes a 60° angle with the perpendicular
to the wall?

6. Mixed Motion (Non-Perpendicular Paths)

When two objects move on paths meeting at a changing angle ¢(t) (or not at 90°), relate the separation
d(t) to path lengths a(t), b(t) via the Law of Cosines, then differentiate.

d> = a® +b® —2abcos ¢

Examples

1. Two hikers leave the same point; Hiker A walks straight north at 4 km/h. Hiker B walks at 5 km/h on
a path turning so that the angle between their paths increases at 2°/min. How fast is their distance
changing after 15 minutes?

11



7. Motion Constrained to a Curve

A point moves along a curve. Treat y = y(x(t)) and use implicit differentiation to link dx/dt and dy/dt.

Examples

2 2

x
1. A point moves on — + v 1. When it is at (2, %), the z-coordinate increases at 0.3 units/s.

How fast is y changing?

2. A bead slides on the curve z2/3 4+ y2/3 = 42/3. At the point (v/2, v/2), the horizontal speed is 1 cm/s
to the right. Find the vertical speed (state up or down).

12
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