Midterm 1 Study Guide – Solutions

MATH1300 - Calculus I

Fall 2025

Contents

1.1–1.3 Precalculus Review	1
2.1 Tangent & Velocity Problems	2
2.2 Limits	3
2.3 Limit Laws	4
2.5 Continuity & IVT	6
2.6 Limits at Infinity & Asymptotes	8
2.7 Derivatives & Rates of Change	10

1.1-1.3 Precalculus Review

Lines

- 1. A line parallel to y = -3x + 7 has slope -3. Through (2, 4), the equation is y = -3x + 10.
- 2. A line perpendicular to $y = \frac{1}{2}x 5$ has slope -2. Through (0,6), the equation is y = -2x + 6.
- 3. The slope through (-1, 2) and (3, -4) is -3/2. The line is $y = -\frac{3}{2}x + \frac{1}{2}$.
- 4. A line with slope -2 through (5,1) can be written in point-slope form y-1=-2(x-5) or slope-intercept form y=-2x+11.

Polynomial End Behavior

- 5. For $f(x) = -4x^5 + 2x^2 7$, the leading term is odd degree with a negative coefficient. As $x \to \infty$, $f(x) \to -\infty$, and as $x \to -\infty$, $f(x) \to \infty$.
- 6. For $f(x) = 3x^4 5x^3 + x 1$, the leading term is even degree with a positive coefficient. As $x \to \pm \infty$, $f(x) \to \infty$.
- 7. For $f(x) = -x^{10} + 8x^7 2$, the leading term is even degree with a negative coefficient. As $x \to \pm \infty$, $f(x) \to -\infty$.

Logs & Exponentials

- 8. $\log_5(125) = 3$ since $5^3 = 125$.
- 9. $\log_2(16) \log_2(4) = 4 2 = 2$.
- 10. To solve $3^x = 81$, note that $81 = 3^4$. Thus x = 4.

Difference Quotient Practice

11. For $f(x) = x^2 + 3x$,

$$\frac{f(a+h) - f(a)}{h} = \frac{(a+h)^2 + 3(a+h) - (a^2 + 3a)}{h}$$
$$= \frac{2ah + h^2 + 3h}{h}$$
$$= 2a + h + 3.$$

12. For $f(x) = \sqrt{x+1}$,

$$\frac{f(2+h) - f(2)}{h} = \frac{\sqrt{3+h} - \sqrt{3}}{h} \cdot \frac{\sqrt{3+h} + \sqrt{3}}{\sqrt{3+h} + \sqrt{3}}$$
$$= \frac{1}{\sqrt{3+h} + \sqrt{3}}.$$

Polynomial Algebra

- 13. The polynomial $P(x) = -6x^2 + 4x 7$ is in standard form. It has degree 2, coefficients -6, 4, -7, leading coefficient -6, and terms $-6x^2, 4x, -7$.
- 14. For $P(x) = 3x^4 2x^3 + x 5$, the degree is 4, the leading coefficient is 3, and the constant term is -5.
- 15. Expanding Q(x) = (x-1)(x+2)(x-3) gives $x^3 2x^2 5x + 6$. The degree is 3 and the leading coefficient is 1.

Polynomial Equations & Factoring

- 16. The equation $x^2 5x + 6 = 0$ factors as (x-2)(x-3) = 0. The solutions are x = 2 and x = 3.
- 17. Solving $2x^2 + 7x + 3 = 0$ gives

$$x = \frac{-7 \pm \sqrt{49 - 24}}{4} = \frac{-7 \pm 5}{4},$$

so
$$x = -\frac{1}{2}$$
 and $x = -3$.

18. The difference of cubes $x^3 - 27$ factors as $(x-3)(x^2+3x+9)$.

Trig Review

1

- 19. $\sin(\frac{\pi}{6}) = \frac{1}{2}$, $\cos(\frac{\pi}{3}) = \frac{1}{2}$, and $\tan(\frac{\pi}{4}) = 1$.
- 20. $\csc(\frac{\pi}{2}) = 1$, $\sec(0) = 1$, and $\cot(\frac{\pi}{3}) = \frac{\sqrt{3}}{3}$.
- 21. For $y = 3\sin(2x)$, the amplitude is 3 and the period is π .
- 22. For $y = -\frac{1}{2}\cos(\pi x)$, the amplitude is $\frac{1}{2}$ and the period is 2.

2.1 Tangent & Velocity Problems

Average Velocity (Data Tables)

1. On [1, 3]:

$$v_{avg} = \frac{s(3) - s(1)}{3 - 1} = \frac{15 - 2}{2} = 6.5 \text{ m/s}.$$

On [2, 4]:

$$v_{avg} = \frac{26 - 7}{2} = 9.5 \text{ m/s}.$$

2. On [0, 2]:

$$v_{avg} = \frac{s(2) - s(0)}{2 - 0} = \frac{11 - 20}{2} = -4.5 \text{ m/s}.$$

On [2, 4]:

$$v_{avg} = \frac{6 - 11}{2} = -2.5 \text{ m/s}.$$

Average Velocity (Formulas)

3. $s(t) = t^2 + 3t$ (m).

[2,5]:
$$v_{avg} = \frac{s(5) - s(2)}{3} = \frac{40 - 10}{3} = 10 \text{ m/s},$$

[5,6]: $v_{avg} = \frac{s(6) - s(5)}{1} = 54 - 40 = 14 \text{ m/s}.$

4. $s(t) = \sqrt{t+4}$ (m).

$$[0,1]: v_{avg} = \sqrt{5} - 2 \approx 0.236 \text{ m/s},$$

 $[1,4]: v_{avg} = \frac{\sqrt{8} - \sqrt{5}}{3} \approx 0.197 \text{ m/s}.$

Secant Slopes and Tangent Slope

5. For $f(x) = x^2$, the secant slope between (2, f(2)) and (2 + h, f(2 + h)) is

$$m = \frac{(2+h)^2 - 4}{h} = \frac{4+4h+h^2 - 4}{h} = 4+h.$$

2

Estimate: the tangent slope at x = 2 is $\boxed{4}$

Average Rates from Real-World Data

6. Car trip:

$$[0,3]: v_{avg} = \frac{150}{3} = 50 \text{ mph,}$$

 $[3,4]: v_{avg} = \frac{60}{1} = 60 \text{ mph,}$
 $[0,4]: v_{avg} = \frac{210}{4} = 52.5 \text{ mph.}$

7. $s(t) = 100t - 5t^2$ (m).

$$[2,3]: v_{avg} = \frac{(300 - 45) - (200 - 20)}{1}$$

$$= 75 \text{ m/s},$$

$$[2,2.1]: v_{avg} = \frac{(210 - 22.05) - (200 - 20)}{0.1}$$

$$= 79.5 \text{ m/s}.$$

This suggests the instantaneous velocity at t = 2 is about 80 m/s.

8. Turkey cooling (°F per min). Secant on [55, 60]:

$$\frac{109 - 114}{5} = -1.0.$$

Secant on [60, 65]:

$$\frac{105 - 109}{5} = -0.8.$$

Average these to estimate the instantaneous rate at t = 60:

$$-0.9$$
 °F/min

9. Reservoir depth W(x) (m). On [150, 250]:

$$\bar{r} = \frac{W(250) - W(150)}{250 - 150} = \frac{54 - 50}{100} = 0.04 \,\text{m/day}.$$

Interpretation: between day 150 and 250, the water depth increased on average by $\boxed{0.04 \text{ m per day}}$.

2.2 Limits

One-Sided Limits

1. $\lim_{x \to 0^-} \frac{1}{x} = -\infty$, $\lim_{x \to 0^+} \frac{1}{x} = +\infty$.

2. $\lim_{x \to (\pi/2)^-} \tan x = +\infty, \lim_{x \to (\pi/2)^+} \tan x = -\infty.$

Absolute Value Limits

3. For x < 0, |x| = -x so $\frac{|x|}{x} = -1$; for x > 0,

 $\bullet \lim_{x \to 0^-} \frac{|x|}{x} = -1,$ $\bullet \lim_{x \to 0^+} \frac{|x|}{x} = 1$

4. For x < 2, |x - 2| = -(x - 2) so $\frac{|x - 2|}{x - 2} = -1$; for x > 2, it equals 1:

• $\lim_{x\to 2^-} \frac{|x-2|}{x-2} = -1$

• $\lim_{x\to 2^+} \frac{|x-2|}{x-2} = 1$

Piecewise Functions

5. $f(x) = \begin{cases} 2x+1 & x < 1 \\ 5 & x = 1 \\ x^2 & x > 1 \end{cases}$

• $\lim_{x\to 1^-} f(x) = 2(1) + 1 = 3$,

• $\lim_{x\to 1^+} f(x) = (1)^2 = 1$,

• $\lim_{x\to 1} f(x) = DNE$.

6. $g(x) = \begin{cases} x^2 & x \le 0\\ \sqrt{x} & x > 0 \end{cases}$

• $\lim_{x\to 0^-} g(x) = 0^2 = 0$,

• $\lim_{x\to 0^+} g(x) = \sqrt{0} = 0$,

 $\bullet \lim_{x\to 0} g(x) = 0.$

Graph-Based Interpretation

7. From the graph:

• $\lim_{x\to -2^-} f(x) = 1$,

• $\lim_{x\to -2^+} f(x) = 3$,

• $\lim_{x\to -2} f(x)$ DNE,

• f(-2) = 3.

8. From the graph:

• $\lim_{x\to 2^-} f(x) = -\infty$.

• $\lim_{x\to 2^+} f(x) = +\infty$,

• $\lim_{x\to 2} f(x)$ does not exist.

9. From the graph:

• $\lim_{x\to 1^-} f(x) = 2$,

• $\lim_{x\to 1^+} f(x) = 2$,

• $\lim_{x\to 1} f(x) = 2$,

• f(1) = -1.

10. From the graph:

• $\lim_{x\to 0^-} f(x) = -1$,

• $\lim_{x\to 0^+} f(x) = 2$,

• $\lim_{x\to 0} f(x)$ DNE,

• f(0) = 1.

2.3 Limit Laws

Direct Use of Limit Laws

1.

$$\lim_{x \to 2} (3x^2 - 4x + 7)$$

$$= \lim_{x \to 2} (3x^2) - \lim_{x \to 2} (4x) + \lim_{x \to 2} (7)$$

$$= 3 \lim_{x \to 2} (x^2) - 4 \lim_{x \to 2} (x) + 7 \lim_{x \to 2} (1)$$

$$= 3 \cdot (2^2) - 4 \cdot (2) + 7 \cdot (1)$$

$$= 12 - 8 + 7$$

$$= \boxed{11}.$$

2.

$$\lim_{x \to -1} (x^3 + 2x^2 - 5x)$$

$$= \lim_{x \to -1} (x^3) + \lim_{x \to -1} (2x^2) - \lim_{x \to -1} (5x)$$

$$= \lim_{x \to -1} (x^3) + 2 \lim_{x \to -1} (x^2) - 5 \lim_{x \to -1} (x)$$

$$= (-1)^3 + 2(-1)^2 - 5(-1)$$

$$= -1 + 2 + 5$$

$$= \boxed{6}.$$

3.

$$\lim_{x \to 4} (x^2 + \sqrt{x}) = \lim_{x \to 4} (x^2) + \lim_{x \to 4} (\sqrt{x})$$

$$= (\lim_{x \to 4} x)^2 + \sqrt{\lim_{x \to 4} x}$$

$$= 4^2 + \sqrt{4}$$

$$= 16 + 2$$

$$= \boxed{18}.$$

Rational Functions

4.

$$\lim_{x \to 3} \frac{x^2 - 9}{x - 3} = \lim_{x \to 3} \frac{(x - 3)(x + 3)}{x - 3}$$
$$= \lim_{x \to 3} (x + 3)$$
$$= 3 + 3 = \boxed{6}.$$

5.

$$\lim_{x \to -2} \frac{x^3 + 8}{x + 2} = \lim_{x \to -2} \frac{(x + 2)(x^2 - 2x + 4)}{x + 2}$$
$$= \lim_{x \to -2} (x^2 - 2x + 4)$$
$$= 4 + 4 + 4$$
$$= \boxed{12}.$$

Roots

6.

$$\lim_{x \to 15} \sqrt[4]{x+1} = \sqrt[4]{\lim_{x \to 15} (x+1)}$$
$$= \sqrt[4]{16}$$
$$= \boxed{2}.$$

7.

$$\lim_{x \to 0} \frac{\sqrt{x+4} - 2}{x} = \lim_{x \to 0} \frac{(\sqrt{x+4} - 2)(\sqrt{x+4} + 2)}{x(\sqrt{x+4} + 2)}$$

$$= \lim_{x \to 0} \frac{x}{x(\sqrt{x+4} + 2)}$$

$$= \lim_{x \to 0} \frac{1}{\sqrt{x+4} + 2}$$

$$= \left[\frac{1}{4}\right].$$

8.

$$\lim_{x \to 0} \frac{\sqrt{1+x} - \sqrt{1-x}}{x} = \lim_{x \to 0} \frac{(1+x) - (1-x)}{x(\sqrt{1+x} + \sqrt{1-x})}$$
$$= \lim_{x \to 0} \frac{2}{\sqrt{1+x} + \sqrt{1-x}}$$
$$= \boxed{1}.$$

9.

$$\lim_{x \to 1} \frac{\sqrt{5x+4} - 3}{x-1} = \lim_{x \to 1} \frac{(5x+4) - 9}{(x-1)(\sqrt{5x+4} + 3)}$$

$$= \lim_{x \to 1} \frac{5(x-1)}{(x-1)(\sqrt{5x+4} + 3)}$$

$$= \lim_{x \to 1} \frac{5}{\sqrt{5x+4} + 3}$$

$$= \left[\frac{5}{6}\right].$$

Squeeze Theorem

10. We have:

$$x-1 \le h(x) \le x^2 + x - 2.$$

As $x \to 1$, both bounds go to 0. Hence,

$$\lim_{x \to 1} h(x) = \boxed{0}.$$

by the Squeeze Theorem.

11. Because $-1 \le \sin(1/x) \le 1$, multiplying through by $x^2 \ge 0$ gives

$$-x^2 \le x^2 \sin\left(\frac{1}{x}\right) \le x^2.$$

As $x \to 0$, both bounds go to 0, so by the Squeeze Theorem

$$\lim_{x \to 0} x^2 \sin\left(\frac{1}{x}\right) = \boxed{0}.$$

12. For $x \neq 0$,

$$-x^2 \le x^2 e^{-1/x^2} \sin\left(\frac{1}{x}\right) \le x^2.$$

As $x \to 0$, both bounds tend to 0, so

$$\lim_{x \to 0} x^2 e^{-1/x^2} \sin\left(\frac{1}{x}\right) = \boxed{0}.$$

Limits from Graphs

- 13. Using the plotted behaviors of f and g:
 - (a) As $x \to 5^-$: $f(x) \to 4$ and $g(x) \to -2$. Thus

$$\lim_{x \to 5^{-}} (f+g) = 4 + (-2) = \boxed{2}.$$

(b) Near x=3: $f(x)\to 2$ from the left and $f(x)\to 0$ from the right. Meanwhile $g(x)\to 0$ from the left and $g(x)\to -2$ from

5

the right. Hence

- $\lim_{x\to 3^-} (f-g) = 2 0 = 2$,
- $\lim_{x\to 3^+} (f-g) = 0 (-2) = 2$
- $\bullet \left[\lim_{x \to 3} (f g) = 2 \right].$
- (c) Near x=1: $f(x) \to -2$ from the left and $f(x) \to 2$ from the right. Then $f^2 \to (-2)^2 = 4$ from the left and $f^2 \to 2^2 = 4$ from the right, so

$$\lim_{x \to 1} f^2 = 4.$$

(d) Since $\lim_{x\to -2} g = -4$,

$$\lim_{x \to -2} (5g) = -20.$$

(e) As $x \to 0$: $f(x) \to 0$ while g(x) tends to a nonzero value. The quotient blows up with opposite signs from the two sides, so

$$\lim_{x \to 0} \left(\frac{g}{f} \right) = \text{DNE} \, .$$

(f) As $x \to -1$: $g(x) \to 0$, while $f(x) \to 4$ from the left and $f(x) \to 2$ from the right. The ratio tends to $-\infty$ from both sides:

$$\lim_{x \to -1} \left(\frac{f}{g} \right) = -\infty.$$

(g) As $x \to -4$: $f(x) \to -4$ from the left and $f(x) \to 3$ from the right; $g(x) \to 3$ from the left and $g(x) \to -4$ from the right. Both one-sided products approach $(-4) \cdot 3 = 3 \cdot (-4) = -12$, so

$$\lim_{x \to -4} (fg) = -12.$$

2.5 Continuity & IVT

Continuity at a Point

1. Note:

$$f(x) = \frac{x^2 - 4}{x - 2} = \frac{(x - 2)(x + 2)}{x - 2} = x + 2$$

for $x \neq 2$. In particular, $\lim_{x\to 2} f(x) = 4$, but f(2) is undefined. Therefore, f(x) is not continuous at x = 2.

2. $\tan x$ has a vertical asymptote at $x = \frac{\pi}{2}$, and the one-sided limits are $\pm \infty$. It is not continuous at $x = \frac{\pi}{2}$.

Piecewise Continuity

3. For $f(x) = \begin{cases} x^2 + 1, & x < 2 \\ ax + b, & x \ge 2 \end{cases}$, continuity at x = 2 requires

$$\lim_{x \to 2^{-}} f(x) = 2^{2} + 1 = 5 = (2a + b) = f(2).$$

Solutions: any a, b with 2a + b = 5. For example, a = 2, b = 1.

4. For
$$g(x) = \begin{cases} \sqrt{x+1}, & x > 0 \\ k, & x = 0, \\ x^2 + 1, & x < 0 \end{cases}$$

$$\lim_{x \to 0^{-}} g = 0^{2} + 1 = 1, \qquad \lim_{x \to 0^{+}} g = \sqrt{1} = 1.$$

Take k = 1 for continuity at 0.

5.
$$F(x) = \frac{x^2 - 9}{x - 3}$$
 for $x \neq 3$ equals $x + 3$. Thus $\lim_{x \to 3} F(x) = 6$ so choose $c = \boxed{6}$.

6. For
$$G(x) = \frac{\sqrt{x-1}-2}{x-5}$$
 at $x = 5$, rationalize:

$$\frac{\sqrt{x-1}-2}{x-5} \cdot \frac{\sqrt{x-1}+2}{\sqrt{x-1}+2} = \frac{x-5}{(x-5)(\sqrt{x-1}+2)}$$
$$= \frac{1}{\sqrt{x-1}+2}.$$

6

Hence
$$\lim_{x\to 5} G = \frac{1}{\sqrt{4}+2} = \boxed{\frac{1}{4}}$$
. Set $c = \frac{1}{4}$.

Classifying Discontinuities

7.
$$\frac{x^2 - 1}{x - 1} = \frac{(x - 1)(x + 1)}{x - 1} = x + 1 \text{ for } x \neq 1.$$
 Therefore, there is a hole at $x = 1$. removable.

8.
$$\frac{1}{x^2}$$
 blows up at $x = 0$. infinite.

9.
$$\frac{|x|}{x}$$
 jumps from -1 to 1 at 0. jump

Graph-Based Reasoning

10. From the graph:

$$x = -2$$
: [jump]
 $x = 0$: [jump]
 $x = 1$: [infinite]
 $x = 2$: [jump]
 $x = 3$: [removable]

Intermediate Value Theorem

11. $f(x) = x^3 - 5x + 2$ is continuous, since it is a polynomial. Check values:

$$f(0) = 2 > 0,$$
 $f(1) = 1 - 5 + 2 = -2 < 0.$

By the IVT, there exists 0 < c < 1 with f(c) = 0.

12. Consider $F(x) = \cos x - x$ on [0, 1]. This is continuous, as it is a difference of two continuous functions, and

$$F(0) = 1 > 0,$$
 $F(1) = \cos 1 - 1 < 0.$

By IVT, there exists 0 < c < 1 with $\cos c = c$.

13. $f(x) = e^x - 4$ is continuous; f(1) = e - 4 < 0, $f(2) = e^2 - 4 > 0$. By IVT, a root lies in (1,2).

Intervals of Continuity

14. For
$$h(x) = \begin{cases} \frac{1}{x+2}, & x < -2\\ x^2 - 1, & -2 \le x < 1\\ \sqrt{x-1}, & x \ge 1 \end{cases}$$

Continuous on $(-\infty, -2)$, $[-2, \infty)$.

At x = -2: jump discontinuity. At x = 1 it is continuous.

15.
$$p(x) = \ln(x-3) + \frac{x}{x-5}$$
.

Domain: $(3,5) \cup (5,\infty)$.

Continuous on (3,5) and $(5,\infty)$. At x=5, there is a vertical asymptote.

Continuity Theorems & Compositions

16. We have

$$g(4) = g(f(0))$$
 since $f(0) = 4$
 $= g\left(\lim_{x \to 0} f(x)\right)$ since f is continuous at $x = 0$
 $= \lim_{x \to 0} g(f(x))$ since g is continuous at $x = 4$
 $= 7$

17. The function h(x) is continuous at x = a because it is the composition of two continuous functions. That is, f(x) is continuous at x = a and \sqrt{x} is continuous at x = 9.

$$\lim_{x \to a} h(x) = \lim_{x \to a} \sqrt{f(x)} = \sqrt{\lim_{x \to a} f(x)} = \sqrt{f(a)} = \boxed{3}.$$

Repairing Removable Discontinuities

18.
$$f(x) = \frac{x^2 - 1}{x - 1} = x + 1$$
 for $x \neq 1$. Define

$$g(x) = \begin{cases} x+1, & x \neq 1 \\ 2, & x = 1 \end{cases}$$

so g is continuous and $g(1) = \boxed{2}$

19.
$$\frac{x^3 - 8}{x - 2} = \frac{(x - 2)(x^2 + 2x + 4)}{(x - 2)} = x^2 + 2x + 4$$
 for $x \neq 2$. Define

$$g(x) = \begin{cases} x^2 + 2x + 4, & x \neq 2\\ 12, & x = 2 \end{cases}$$

so g is continuous and $g(2) = \boxed{12}$

2.6 Limits at Infinity & Asymptotes

Horizontal Asymptotes (Rational)

- 1. The degrees of the numerator and the denominator are the same, so use leading–coefficient ratio: horizontal asymptote $y = \frac{3}{2}$.
- 2. The numerator's degree is one larger, so there is no horizontal asymptote; the function grows like 5x to $\pm\infty$.
- 3. Since the denominator has a higher power than the numerator, both limits are 0: $\lim_{x\to\pm\infty}\frac{2x+1}{x^3+4}=0.$
- 4. The degrees of the numerator and the denominator are the same, so the end behavior tends to the leading-coefficient ratio: y = -2 (horizontal asymptote on both ends).

Vertical Asymptotes (Rational)

- 5. Denominator $x^2 9 = (x 3)(x + 3)$ vanishes at $x = \pm 3$; numerator (x 1) is nonzero there \Rightarrow vertical asymptotes at x = -3, 3.
- 6. Denominator is $(x-2)^2 \Rightarrow$ vertical asymptote at x=2.
- 7. Denominator x(x-1) zeros are x=0,1 (numerator is nonzero) \Rightarrow vertical asymptotes at x=0,1.

Vertical Asymptotes (Log/Trig)

- 8. $\ln x$ is defined for x > 0 and $\ln x \to -\infty$ as $x \to 0^+ \Rightarrow$ vertical asymptote at $x \to 0^+$.
- 9. $\tan x = \frac{\sin x}{\cos x}$ blows up where $\cos x = 0$. In $(-\pi, \pi)$: $x = -\frac{\pi}{2}, \frac{\pi}{2}$.

Oblique (Slant) Asymptotes

10. Divide: $\frac{2x^2 - 3x + 1}{x - 1} = 2x - 1$ exactly, with a hole at x = 1 (since (x - 1) cancels). Slant line y = 2x - 1. No vertical asymptote.

11. Long division gives $f(x) = x+1+\frac{x}{x^2-1}$. As $x \to \pm \infty$, the fraction goes to 0. Hence there is a slant asymptote at y = x+1. The denominator (x-1)(x+1) vanishes at $x = \pm 1$ and the numerator is nonzero there, so there are vertical asymptotes at x = -1, 1.

Horizontal Asymptotes (Non-Rational)

- 12. $\arctan x \to \pm \frac{\pi}{2} \text{ as } x \to \pm \infty$. Horizontal asymptotes: $y = \pm \frac{\pi}{2}$.
- 13. As $x \to \infty$, $e^{-x} \to 0$, which means $f \to 1$. As $x \to -\infty$, $e^{-x} \to \infty$, and so $f \to 0$. Horizontal asymptotes: y = 0 and y = 1.
- 14. Start by rationalizing:

$$\sqrt{x^2 + 1} - x = \frac{(\sqrt{x^2 + 1} - x)(\sqrt{x^2 + 1} + x)}{\sqrt{x^2 + 1} + x}$$
$$= \frac{1}{\sqrt{x^2 + 1} + x}.$$

For x > 0,

$$\lim_{x \to \infty} \frac{1}{\sqrt{x^2 + 1} + x} = \lim_{x \to \infty} \frac{1}{x \left(\sqrt{1 + \frac{1}{x^2}} + 1\right)}$$
$$= 0.$$

For x < 0, write $\sqrt{x^2 + 1} = (-x)\sqrt{1 + \frac{1}{x^2}}$. Then

$$\lim_{x \to -\infty} \frac{1}{\sqrt{x^2 + 1} + x} = \lim_{x \to -\infty} \frac{1}{(-x)\left(\sqrt{1 + \frac{1}{x^2}} - 1\right)}$$

$$= \lim_{x \to -\infty} \frac{\sqrt{1 + \frac{1}{x^2}} + 1}{(-x)\left(\frac{1}{x^2}\right)}$$

$$= \lim_{x \to -\infty} -x\left(\sqrt{1 + \frac{1}{x^2}} + 1\right)$$

Interpretation. As $x \to \infty$, the graph approaches the horizontal line y = 0 (right-end

horizontal asymptote). As $x \to -\infty$, the function grows without bound, so there is no left-end horizontal asymptote.

15.

$$x - \sqrt{x^2 + 2x} = \frac{(x - \sqrt{x^2 + 2x})(x + \sqrt{x^2 + 2x})}{x + \sqrt{x^2 + 2x}}$$

$$= \frac{x^2 - (x^2 + 2x)}{x + \sqrt{x^2 + 2x}}$$

$$= \frac{-2x}{1 + \sqrt{1 + \frac{2}{x}}}$$

Therefore,

$$\lim_{x \to \infty} \left(x - \sqrt{x^2 + 2x} \right) = \lim_{x \to \infty} \frac{-2}{1 + \sqrt{1 + \frac{2}{x}}}$$
$$= \frac{-2}{1 + 1}$$
$$= -1$$

Interpretation. The right-end horizontal asymptote is y = -1. Hence y = 0 is not a horizontal asymptote.

Growth-Rate Comparisons (Poly vs. Exp vs. Log)

- 16. $\lim_{x \to \infty} \frac{\ln x}{x} = 0$ (polynomial in the denominator wins); $\lim_{x \to \infty} \frac{x}{\ln x} = \infty$.
- 17. Exponential beats any fixed power: $\lim_{x\to\infty}\frac{e^x}{x^5}=\infty, \ \lim_{x\to\infty}\frac{x^7}{e^{0.1x}}=0.$
- 18. Let $t = \sqrt{x}$, so that $x = t^2$. Then $\frac{x^3 \ln x}{e^{\sqrt{x}}} = \frac{t^6 (2 \ln t^2)}{e^t}$, which goes to 0. The exponential $e^{\sqrt{x}}$ dominates.
- 19. $\lim_{x \to \infty} \frac{(\ln x)^4}{x^{1/3}} = 0$. The (even small) power $x^{1/3}$ grows faster than any power of $\ln x$.

Vertical Asymptotes (One-Sided Sign Analysis)

- 20. $\lim_{x \to -6^-} \frac{x+5}{x+6} = +\infty$ (negative over tiny negative), $\lim_{x \to -6^+} \frac{x+5}{x+6} = -\infty$ (negative over tiny positive). Two-sided limit does not exist; vertical asymptote at x = -6 with opposite signs on the two sides.
- 21. $\lim_{x \to 2^{-}} \frac{1}{x 2} = -\infty$, $\lim_{x \to 2^{+}} \frac{1}{x 2} = +\infty$. In contrast, $\lim_{x \to 2} \frac{1}{(x - 2)^{2}} = +\infty$ from both sides.
- 22. For $f(x) = \frac{2x-1}{(x+3)^2}$, the denominator is always positive and $\to 0$ as $x \to -3$, while the numerator $\to -7$. Thus $\lim_{x \to -3^{\pm}} f(x) = -\infty$. Vertical asymptote at x = -3 with negative blow-up on both sides.

Holes vs. Vertical Asymptotes

- 23. $\frac{x^2 + 2x 3}{x^2 9} = \frac{(x+3)(x-1)}{(x+3)(x-3)} = \frac{x-1}{x-3} \text{ for } x \neq -3. \text{ Hole at } \boxed{x=-3}; \text{ vertical asymptote at } \boxed{x=3}.$
- 24. $\frac{x^2-1}{x-1} = \frac{(x-1)(x+1)}{x-1} = x+1$ for $x \neq 1$. No vertical asymptotes; there is a hole at x=1 (the point (1,2) is removed).
- 25. $\frac{x^2-4}{x^2-x-2} = \frac{(x-2)(x+2)}{(x-2)(x+1)} = \frac{x+2}{x+1} \text{ for } x \neq 2. \text{ Hole at } \boxed{x=2}; \text{ vertical asymptote at } \boxed{x=-1}.$

2.7 Derivatives & Rates of Change

Definition of the Derivative

1.

$$f'(2) = \lim_{h \to 0} \frac{(2+h)^2 - 4}{h}$$
$$= \lim_{h \to 0} \frac{4+4h+h^2 - 4}{h}$$
$$= \lim_{h \to 0} (4+h) = 4$$

2.

$$f'(0) = \lim_{h \to 0} \frac{h^3}{h}$$
$$= \lim_{h \to 0} h^2 = 0$$

3.

$$f'(a) = \lim_{h \to 0} \frac{m(a+h) + b - (ma+b)}{h}$$
$$= \lim_{h \to 0} \frac{mh}{h} = m$$

Radicals / Rationals

4.

$$f'(1) = \lim_{h \to 0} \frac{\sqrt{1+h} - 1}{h} \cdot \frac{\sqrt{1+h} + 1}{\sqrt{1+h} + 1}$$
$$= \lim_{h \to 0} \frac{h}{h(\sqrt{1+h} + 1)}$$
$$= \frac{1}{2}$$

5.

$$f'(3) = \lim_{h \to 0} \frac{\frac{1}{3+h} - \frac{1}{3}}{h}$$

$$= \lim_{h \to 0} \frac{3 - (3+h)}{h \cdot 3(3+h)}$$

$$= \lim_{h \to 0} \frac{-h}{h \cdot 3(3+h)} = -\frac{1}{9}$$

6.

$$f'(4) = \lim_{h \to 0} \frac{\sqrt{5+h} - \sqrt{5}}{h} \cdot \frac{\sqrt{5+h} + \sqrt{5}}{\sqrt{5+h} + \sqrt{5}}$$
$$= \lim_{h \to 0} \frac{h}{h(\sqrt{5+h} + \sqrt{5})}$$
$$= \frac{1}{2\sqrt{5}}$$

Tangent Lines at a Point

7. $y = 6x - x^2$ at (2,8). Check: $6(2) - 2^2 = 12 - 4 = 8$. Slope at x = 2 by the limit definition:

$$m = \lim_{h \to 0} \frac{[6(2+h) - (2+h)^2] - [6 \cdot 2 - 2^2]}{h}$$
$$= \lim_{h \to 0} \frac{12 + 6h - (4 + 4h + h^2) - (12 - 4)}{h}$$
$$= \lim_{h \to 0} (2 - h) = 2.$$

Tangent line: y-8 = 2(x-2), i.e. y = 2x+4.

- 8. $y = 1 + 5x^2$.
 - (a) Slope at x = a:

$$m(a) = \lim_{h \to 0} \frac{[1 + 5(a+h)^2] - (1 + 5a^2)}{h}$$
$$= \lim_{h \to 0} \frac{5(2ah + h^2)}{h}$$
$$= \lim_{h \to 0} (10a + 5h) = 10a.$$

- (b) At (1,6): slope m = 10. Tangent line y 6 = 10(x 1), i.e. y = 10x 4.
- 9. $y = \sqrt{x+4}$ at x = 5. Slope via the limit definition (rationalize):

$$m = \lim_{h \to 0} \frac{\sqrt{(5+h)+4} - \sqrt{5+4}}{h} \cdot \frac{\sqrt{9+h} + \sqrt{9}}{\sqrt{9+h} + \sqrt{9}}$$
$$= \lim_{h \to 0} \frac{h}{h \left[\sqrt{9+h} + 3\right]}$$
$$= \frac{1}{6}.$$

Point is (5,3). Tangent: $y-3 = \frac{1}{6}(x-5)$,

i.e.
$$y = \frac{1}{6}x + \frac{13}{6}$$
.

- 10. The tangent to y=f(x) at (4,-1) passes through (0,-5). The slope of that line is $m=\frac{-1-(-5)}{4-0}=1$. Hence f(4)=-1 and f'(4)=1.
- 11. The tangent to y=f(x) at (1,2) passes through (-3,-6). The slope is $m=\frac{2-(-6)}{1-(-3)}=2$. Hence f(1)=2 and f'(1)=2.

Recognize "Derivative from a Limit"

12.
$$f(x) = 2x^2 - 5$$
, $a = 3$.

13.
$$f(x) = \sqrt{x}, \ a = 9.$$

14.
$$f(x) = \ln x$$
, $a = 1$.